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ABSTRACT 

Northern prairie pothole wetlands provide crucial habitat for numerous waterbirds.  

However, wetland abundance and quality in the Prairie Pothole Region of North America has 

declined because of agricultural landscape modifications.  Effective management of waterbird 

populations relies on understanding how landscape modifications alter wetland hydrology and 

biological communities in context of climate-driven wet–dry periods. 

 A common modification involves consolidation of smaller more-temporary wetlands into 

larger more-permanent ones.  I evaluated whether consolidation drainage has progressive-

chronic effects on hydrology of remaining wetlands during 2003–2010 in the Prairie Pothole 

Region of North Dakota.  For wetlands in topographic basins that were not already full, rate of 

water surface area change was positively correlated with consolidation drainage during a wetting 

phase, but negatively correlated during a drying phase.  This unbalancing of water budgets 

through wetting and drying phases suggests that 1) consolidation drainage has a progressive-

chronic effect on wetland hydrology; and 2) wetlands receiving water in extensively drained 

landscapes will continue to increase in volume through each climate fluctuation until they reach 

their spilling point, then stabilize.  Proportion of wetlands covered by cattail was negatively 

correlated with increases in water depth, thus cattail coverage may increase as water levels 

stabilize as a result of consolidation drainage.  Fish were present in 57% of wetlands and 

probability of fish occurrence was greater in wetlands that had greater water depth and wetland 

connectivity.  Weak evidence suggests amphipod densities decreased where there was extensive 

drainage and increased in more full basins, probably due to improved overwinter survival. 

The alternative stable states hypothesis predicts clear versus turbid observable states that 

reflect differing trophic structures in wetlands.  I conducted a landscape-scale evaluation of this 
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hypothesis by examining the distribution of remotely-sensed chlorophyll a concentrations within 

978 wetlands.  My findings suggest that trophic structure in prairie wetlands is better understood 

within a continuum of trophic status rather than discrete states.  My results provide an improved 

understanding of how land use and climate variability influence productivity in wetlands across 

the region and should help shape future research and conservation priorities focused on wetland 

services and waterbird populations. 
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CHAPTER 1.  GENERAL INTRODUCTION 

Northern prairie pothole wetlands provide crucial migration and breeding habitat for 

numerous waterbirds, including fourteen species given Level-I and Level-II Conservation 

Priority under the North Dakota Comprehensive Wildlife Conservation Strategy (NDGF 2004).  

Effective management and restoration of wetland habitats targeted toward species of 

conservation priority relies on an understanding of how land use can alter wetland hydrology and 

ultimately influence the biological community structure and productivity in wetlands.  Land-use 

changes must be understood in context of climate variability, because fluctuations between wet 

and dry conditions drive wetland hydrology in the Prairie Pothole Region (van der Valk 2005).   

Hydrologic fluctuations in response to climate variability have shaped floral and faunal 

community structures of prairie pothole wetlands for thousands of years (Kantrud et al. 1989; 

Laird et al. 2003).  Productivity in prairie pothole wetlands pulses in response to nutrient cycling 

that is driven primarily by inter-annual water-level fluctuations (Murkin 1989; Euliss et al. 

1999).  Semipermanent wetlands are especially important across a region that experiences 

pronounced wet–dry climate fluctuations.  During dry years they may offer the only suitable 

habitat for waterbirds in the region, while during wet years these wetlands are capable of 

producing great amounts of food resources that support a variety of higher level consumers (e.g., 

waterbirds, salamanders, and fish; Kantrud and Stewart 1984; Batt et al. 1989; Kantrud et al. 

1989; Euliss et al. 1999; Anteau and Afton 2009a; Anteau 2012).  Accordingly, disturbances in 

wetlands that alter hydrologic responses to climate variability represent a threat to native 

communities and productivity.  Moreover, abundance and quality of prairie wetlands has 

declined due to landscape modifications, primarily related to agriculture (Dahl 1990; Anteau and 
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Afton 2008; Bartzen et al. 2010; Anteau and Afton 2011), and these declines may ultimately 

impact waterbird populations (e.g., Devries et al. 2008; Anteau and Afton 2009b). 

Since the late 1800’s, demand for agriculture in the northern prairie regions of the United 

States has resulted in conversion of 75–99% of native prairie uplands for agricultural land use 

and other development (Samson and Knopf 1994), with drainage of >50% to ~90% of the 

original wetlands (e.g., North Dakota and Iowa, respectively; Dahl 1990).  Consequently, the 

quality of many remaining wetlands has been reduced due to hydrologic modifications and 

sedimentation (Euliss and Mushet 1996; van der Kamp et al. 1999; Anteau 2012).  Tillage within 

a catchment may increase hydroperiods of less-permanent wetlands, but likely has less of an 

effect on the hydrology of more-permanent wetlands that primarily receive water input from 

groundwater (Euliss and Mushet 1996).  However, drainage of smaller, less-permanent wetlands 

into larger, more-permanent ones (i.e., consolidation drainage) represents a threat to all wetland 

communities where it occurs (Krapu et al. 2004; Anteau 2012; McCauley et al. In Review).  

Consolidation drainage moves water from many sites in the upper portion of the catchment to a 

single site at the bottom of a catchment.  Consolidation drainage likely minimizes recharge of 

groundwater, decreases evapotranspiration that would normally occur in the upper catchments 

(Spaling and Smit 1995; Anteau 2012), and disrupts hydrologic fluctuations in remaining 

wetlands in response to climate variability (Merkey 2006; Anteau 2012).  Thus, wetlands that 

hold consolidated water are larger now than they were historically (McCauley et al. In Review).  

Furthermore, wetlands in highly drained catchments are more likely to spill over their 

topographic basin to become further connected to wetlands in adjacent basins (Leibowitz and 

Vining 2003).  I examined the impact of consolidation drainage on water-level dynamics in 
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more-permanent wetlands in North Dakota during both a climatic drying phase and a wetting 

phase (Chapter 2). 

Changes in hydrologic fluctuation and wetland connectivity have the potential to 

influence ecological communities in prairie wetlands.  High and stable water regimes may shift 

community composition toward species adapted to more hydrologically stable environments.  

Further, increased connectivity among basins often provides colonization corridors for aquatic-

obligate species (e.g., fish) that rarely colonize isolated basins (Peterka 1989).  Together these 

conditions can favor certain invasive plant and animal species like cattail (Typha spp.) and fish 

that can further threaten natural ecological functions in prairie wetlands.  Those species were 

historically kept in check in native communities by greater dynamics and surface isolation of 

natural wetlands (Shay et al. 1999).  Compared to historical records the prevalence of cattails and 

fish was found to have increased in prairie wetlands in 2004 and 2005, at the end of a high and 

stable water regime (Swanson 1992; Anteau and Afton 2008).  These increases likely have 

implications for habitat structure and abundance and quality of forage for waterbirds.  Therefore, 

I evaluated how landscape modifications and water-level dynamics have influenced the 

abundance and distribution of cattail and fish in prairie wetlands of North Dakota (Chapters 3 

and 4). 

Aquatic invertebrates are an important component of the waterbird food resources 

produced in prairie wetlands (Euliss et al. 1999).  Agricultural landscape modifications have 

been linked to decreased abundance of aquatic invertebrates or shifts in community composition 

that may alter food availability (Euliss and Mushet 1999; Anteau et al. 2011).  In prairie 

wetlands, amphipod density can serve as an indicator of wetland and water quality because 

amphipods are sensitive to contaminants, disturbances in uplands, and invasive species (Grue et 
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al. 1988; Tome et al. 1995; Duan et al. 2000; Anteau and Afton 2008; Hentges and Stewart 2010; 

Anteau et al. 2011).  In a 2004–2005 survey, amphipod density was low across the Prairie 

Pothole Region (including North Dakota) compared to historical records (Anteau and Afton 

2008), perhaps due to landscape modifications (Anteau and Afton 2008; Anteau et al. 2011).  

However, amphipod densities could have been low because 2004–2005 was preceded by a period 

of relatively high and stable water since 1993 (Euliss et al. 1999; Euliss et al. 2004).  The Prairie 

Pothole Region in North Dakota experienced moderate to severe drought during 2006–2008 

(NCDC 2014), making it possible for basins to have lower water levels and subsequent nutrient 

cycling (Euliss et al. 1999).  In spring 2009, wet conditions returned to prairie wetlands in North 

Dakota (NCDC 2014).  During 2010–2011, I surveyed amphipods within the same North Dakota 

wetlands surveyed in 2004–2005 (Anteau and Afton 2008), and evaluated changes in their 

density in relation to water-level dynamics and landscape modifications (Chapter 5).  By 

comparing water-level data and amphipod densities collected in 2010 and 2011 to those collected 

in 2004 and 2005, I intended to provide, 1) an estimate of amphipod densities available for 

spring-migrating and pre-breeding waterbirds under climatic conditions expected to be better for 

amphipod production, and 2) an understanding of how landscape modification effect the 

influence of climate variability on hydrology, amphipod density, and overall wetland 

productivity. 

Scheffer et al. (1993) described two alternative states in shallow lakes (typically <3 m 

depth; Scheffer 1998), a clear state where primary productivity is dominated by submerged 

aquatic vegetation and a turbid state where primary productivity is dominated by phytoplankton 

(hereafter the “alternative stable state” hypothesis).  Both semipermanent wetlands (Kantrud et 

al. 1989) and shallow-water permanent wetlands (i.e., shallow lakes; Scheffer et al. 1993) have 
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been reported to exist in either a clear or a turbid state (Bayley and Prather 2003; Zimmer et al. 

2009).  Communities where submerged aquatic vegetation is abundant generally have food webs 

with higher density and greater diversity of both invertebrates and vertebrates than in 

phytoplankton-dominated wetlands (Hargeby et al. 1994; Scheffer and van Nes 2007).  Aquatic 

invertebrates, typical in clear wetlands, are important prey for waterbirds of conservation 

concern.  Consequently, clear-water wetlands likely provide better foraging conditions for 

waterfowl and other waterbirds than do turbid wetlands (Anteau and Afton 2008).  I evaluated 

the alternative stable state hypothesis by examining whether these clear versus turbid states were 

observable across landscapes in the Prairie Pothole Region of North Dakota as indicated by a 

bimodal distribution of wetland chlorophyll a concentration (Chapter 6).  To conduct the 

evaluation across landscapes, I assessed previously published remote sensing techniques (see 

Sass et al. 2007) and developed new indices to estimate chlorophyll a concentrations as a 

proximate estimate of phytoplankton biomass within large semipermanent and permanent prairie 

wetlands (Chapter 6).  I examined the distribution of wetland chlorophyll a concentrations for 

evidence of bimodality or discontinuity.  Finally, I evaluated the influence of landscape 

modification on wetland chlorophyll a concentration by applying both a continuous model and a 

binomial model based on response thresholds consistent with the alternative stable states 

hypothesis (Chapter 6). 
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CHAPTER 2.  PRIOR CONSOLIDATION DRAINAGE HAS PROGRESSIVE-

CHRONIC EFFECTS ON WETLAND HYDROLOGY 

Abstract 

The potential of legacy effects from past ecosystem disturbances to progressively degrade 

ecosystem integrity in the absence of management intervention has been ignored in ecological 

literature.  Identifying the temporal influence of a disturbance is essential to understanding how 

ecosystems respond to environmental change and to developing management strategies.  I used 

drying and wetting phases resulting from climate variability during 2003–2010 in the Prairie 

Pothole Region of North Dakota as a natural experiment to evaluate whether past wetland 

drainage has progressive-chronic effects on the hydrology of 122 remaining, more-permanent 

wetlands.  For wetlands in topographic basins that were not already full (due to lower watershed 

connectivity), the rate of water surface area change was positively correlated with past drainage 

of wetlands within catchments of focal wetlands during the wetting phase, but was negatively 

correlated during the drying phase. Wetlands that were nearer their spilling point changed less 

during each phase than those basins that were less full.  This unbalancing of water budgets 

through wetting and drying phases suggests that wetlands in extensively drained landscapes will 

continue to get larger through each climate fluctuation until they reach their spilling point; then 

water levels should stabilize and produce a sustained, non-isolated lake phase.  Accordingly, past 

wetland drainage in the catchment likely has progressive-chronic effects on the hydrology of 

more-permanent wetlands in the region.  These changes in wetland hydrology have implications 

for the integrity of ecological systems and social benefits derived from wetlands in the region. 

Further, my findings support the hypothesis that wetland drainage increases surface-water 

transfer from smaller to larger watersheds, adding to landscape- and regional-scale flooding 
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problems.  Lastly, my results illustrate the importance of understanding the temporal influence of 

anthropogenic disturbances for making informed conservation decisions, because progressive-

chronic effects can continue to degrade ecosystem services unless the prior disturbance is 

mitigated. 

Introduction 

Anthropogenic modifications to landscapes can have long-lasting effects on ecosystems, 

and those effects can remain well after disturbance events are over.  Accordingly, to understand 

how specific disturbances contribute to environmental change both an appropriate spatial and 

temporal scale of observation are required to avoid misinterpretation of the effect or non-effect 

on ecosystem response (Allen and Starr 1982).  Much attention has been given to the 

accumulation of anthropogenic modifications across a landscape or through time (Weller 1988; 

Turner II et al. 1990; Spaling and Smit 1995).  However, a scientific understanding of long-term, 

or legacy, effects that disturbances have on ecosystems, even after further disturbance ceases 

remains somewhat elusive (Harding et al. 1998; Foster et al. 2003; Cuddington 2011; Martin et 

al. 2011).  Identification of the temporal influence of an anthropogenic disturbance in an 

ecosystem is a critical piece of information for conservation programs to understand, because 

there is potential for further ecosystem degradation as a result of inaction if the past disturbance 

continues to progressively affect the ecosystem. 

Effects of ecosystem disturbances can manifest as temporally acute or chronic. An acute 

effect will cause a temporary change in the condition of the ecosystem, and then once the 

disturbance has ceased, resilience within the system can return the ecosystem to the previous 

condition (Holling 1973; Figure 2.1)—akin to an allostatic response mechanism (Sterling and 

Eyer 1988).  Alternatively, chronic effects may keep ecosystems in a changed state.  However, 
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simply stopping future modifications to a landscape may not be enough to stop the increasing 

ecological effect of the disturbance.  While static-chronic effects cause a more-immediate 

transition to a new stable state (Scheffer et al. 2001), some disturbances may create a positive 

feedback mechanism that may continue to amplify deleterious effects on an ecosystem after the 

disturbance has ceased (Figure 2.1).  Borrowing from epidemiology, I term these effects as 

progressive-chronic effects.  Temporal scale is important in distinguishing between progressive- 

and static-chronic because eventually progressive-chronic effects may appear as static-chronic 

effects once a system fundamentally changes in structure and function. 

 

Figure 2.1.  Conceptual model of possible temporal influences (acute, static-chronic, and 
progressive-chronic) that a disturbance can have on quality of an ecosystem over time. T0, T1, 
T2 represent a generic ecosystem quality prior to, immediately following, and some time after 
the disturbance event, respectively. 
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Wetlands in the Prairie Pothole Region of North Dakota have experienced a number of 

ecological disturbances during the recent past (1970s to present), which makes this an ideal area 

for examining the temporal influence of disturbances related to land use.  Namely, consolidation 

drainage is a common practice used by some agricultural producers throughout the region in an 

attempt to increase tillable acreage.  The practice involves draining smaller, less-permanent 

wetlands into larger, more-permanent ones (Krapu et al. 2004; Anteau 2012).  Recent studies 

have demonstrated that wetland water levels historically responded more strongly to climate 

variability than they do currently (Post van der Burg et al. In Prep.), and that wetlands with 

increasing consolidation drainage in their catchment had increased size compared to their 

historical size (McCauley et al. In Review).  In prairie pothole wetlands, hydrological, 

biophysical, and biological processes are driven by periodic wet–dry climate periods (Winter and 

Carr 1980; Batt et al. 1989; Kantrud et al. 1989; Laird et al. 2003); therefore, disturbances that 

change hydrological responses in wetlands to climate variability can alter their ecology and 

potentially reduce their value in providing services to society (Poiani and Johnson 1993; Johnson 

et al. 2010; Anteau 2012; McCauley et al. In Review). 

While it is now known that consolidation drainage that occurred historically has had a 

chronic effect on remaining wetlands (McCauley et al. In Review), it remains unclear if that 

disturbance continues to degrade the hydrological responses of those wetlands to climate 

variability.  Where consolidation drainage has occurred there is an increased rate of surface 

water flow from the upper to the lower portion of the catchment.  Thus, wetlands in the lower 

catchment would have altered hydrologic responses characterized by increased surface water in-

flow during both wetting and drying climate phases.  Further, wetlands that collect consolidated 

water likely dry less quickly because surface area to volume ratios may decrease and result in a 
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reduction of evaporation (Winter 1989) and because there is less groundwater infiltration in 

larger wetlands (van der Kamp and Hayashi 1998).  If consolidation drainage has indeed had a 

progressive-chronic effect on wetland hydrology, there is a potential for further ecosystem 

degradation to occur as a result of management inaction in highly modified catchments. Thus, 

temporal influence of a disturbance is an important piece of information for conservation 

programs to use in prioritizing efforts to improve efficacy of the programs.   

Here, I present a natural experiment that examines the temporal influence of wetland 

drainage on the hydrology of remaining wetlands in the Prairie Pothole Region.  Based on the 

work of McCauley et al. (In Review), I focused on the most recent climate period (2003–2010) 

that included a drying and a wetting phase of similar intensity.  Selection of this time period 

limited the potential complications of changes in the amount of catchment drainage between or 

within climate phases, because consolidation drainage in my study area predominantly occurred 

prior to 2003 (McCauley et al. In Review).  This framework allowed me to use separate tests of 

catchment modification as a progressive-chronic effect on water level dynamics in each climate 

phase to form my interpretation of the overall effect on wetland hydrology response to climate 

variability.  

If consolidation drainage has had a static-chronic effect on wetland hydrology, the 

observed water level response within wetlands during wetting and drying phases should not be 

dependent upon the amount of consolidation drainage in the catchment and respond similarly to 

wetting and drying events (Figure 2.2).  However, if consolidation drainage has a progressive-

chronic effect, then hydrologic responses to wetting or drying phases would be dependent upon 

the amount of consolidation drainage in the catchment (Figure 2.2).  I consider this a 

progressive-chronic effect because variation in hydrologic response occurred when I detected no 
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change in the amount of drainage throughout the study period.  Further, if wetland response to 

wetting and drying phases differed in amplitude, attributable to drainage, this would also indicate 

progressive-chronic effects.  

 

 
Figure 2.2.  Predictions of experimental results under the expectation that catchment drainage 
has a progressive-chronic effect on rate of change in water surface area in remaining more-
permanent wetlands during climatic wetting and drying phases (solid line).  This prediction is 
compared to the expected result if catchment drainage did not affect the rate of change, but had 
either an acute effect, or a static-chronic effect (dashed line). 
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Methods 

Study Area 

My study area was the Prairie Pothole Region of North Dakota (Figure 2.3) where 

wetlands of varying water permanence (hereafter, hydroperiods) have formed within glacially-

created depression basins that were historically surrounded by temperate grassland.  In these 

wetlands, hydrological, biophysical, biological processes are driven by periodic wet–dry periods 

caused by an oscillating climate pattern (Winter and Carr 1980; Batt et al. 1989; Kantrud et al. 

1989; Laird et al. 2003).  Larger and more-permanent wetlands were of particular interest in this 

study because their condition is affected by disturbances throughout a larger watershed area that 

often includes multiple smaller, less-permanent wetland basins; therefore, larger, more-

permanent wetlands may indicate the condition of the landscape (Anteau and Afton 2011).   

Accordingly, I studied lacustrine semipermanent and shallow-water permanent wetlands 

(Cowardin et al. 1979) that were originally randomly selected by Anteau and Afton (2008; n = 

153) and visited once in 2004 or 2005.  Wetlands must have had an open water area larger than 

120 m across to be surveyed in 2004 or 2005.  In 2004 or 2005, if reselection in the field was 

necessary, the nearest suitable semipermanent or permanent wetland was surveyed.  In 2010 and 

2011, I was able to return to and collect necessary data from 122 of the original 153 wetlands.  

Based on National Wetland Inventory classification (NWI; U.S. Fish and Wildlife Service 2003), 

67% of wetlands were semipermanent, 3% seasonal, and the rest were permanent wetlands or 

shallow-water lakes.  Those wetlands classified by NWI as seasonal were reselected wetlands 

that were more characteristic of semipermanent wetlands at the time of the field assessment in 

2004 or 2005. 
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Figure 2.3.  North Dakota study area with Prairie Pothole Region shaded, counties east of the 
Missouri River outlined, and randomly selected townships outlined wherein three wetlands were 
randomly sampled. Inset map of the United States and Canada showing the location of the Prairie 
Pothole Region (shaded) and North Dakota (bold outline). 

 
Data Preparation 

Climate index 

I used a fine-scale climatic wetland hydrologic index (2.5 arc-minute) derived by Post 

van der Burg et al. (In Prep.) to estimate the effect of climate on water surface area within 

wetlands using the standardized precipitation-evapotranspiration index (SPEI; Vicente-Serrano et 

al. 2010) calculated from PRISM (Parameter-elevation Regression on Independent Slopes 

Model) Climate Group data (PRISM Climate Group 2002; Di Luzio et al. 2008).  SPEI can 

summarize moisture surpluses or deficits by aggregating the difference between precipitation and 

potential evaporation over different time scales.  During the period of my study, uniformly 

averaged monthly climate conditions over the previous six years best explained wetland water 
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levels (Post van der Burg et al. In Prep.).  Index values above zero represent wetter climate 

conditions and values below zero represent drier conditions.  

Based on climate conditions, I designated 2003–2005 as a wet period, 2006–2008 as a 

dry period, and 2009–2010 as a wet period.  I then identified the drying phase as the change 

between the first wet period and the dry period, and the wetting phase as the change between the 

dry period and the second wet period.  I structured my analysis of wetland surface area change 

by these two climate phases.  In North Dakota, there is geographic variability in 1) the amount of 

variability in the difference between precipitation and evapotranspiration, and 2) the intensity of 

wetting and drying phases during one period of time (Laird et al. 2003; Post van der Burg et al. 

In Prep.).  In my model, I controlled for the influence of geographic variability in the intensity of 

wetting and drying phases by using the peak-to-peak amplitude of the climatic wetland 

hydrologic index for each phase. 

Catchments 

I used wetland catchments defined by McCauley et al. (In Review) that were delineated 

using high-resolution digital elevation models (DEM) to detect the portion of the landscape 

where surface water flows into the focal wetland.  These catchments were an index of watershed 

derived wetland complexes that included more-intermittent wetlands and their catchments 

(McCauley and Anteau 2014).  DEM source data included 1 m pixel lidar (data available from 

the U.S. Geological Survey) or ~1.25 m pixel interferometric synthetic aperture radar (IfSAR; 

Intermap Technologies, Inc., Englewood, Colorado).  I used catchment size in my analysis, but I 

also used the extent of the catchment to define the area to assess land use effects upon wetlands 

(McCauley and Anteau 2014).  For logistical reasons associated with assembling landscape 

variables, such as amount of wetland area drained, I used catchments truncated to a 2.5 km 
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maximum radius from the wetland basin for 46% of catchments because they were large or 

highly irregular in shape.  The 2.5-km radius encompassed >90% of the total catchment area for 

68% of catchments.  Landscape conditions within these 2.5-km truncated catchments should 

represent the condition of the full catchment, and the conditions nearest the wetland basin likely 

influence the basin most.  Therefore, I assume the 2.5-km-truncated catchment provided a 

reasonable area to evaluate impacts of land use in this system and are an improvement over the 

simply buffering around a wetland a set distance, a common practice (McCauley and Anteau 

2014).    

Catchment drainage 

I used estimates of the percent of the catchment area that was drained wetland during 

2003–2010 from multiple data sources, including: aerial photographs, DEM, NWI, and spatially 

explicit soil data (see McCauley et al. In Review).  Wetlands were identified as drained if they 

were present in historical photographs (dating back to 1937) but not present in current 

photographs, or if the wetlands were identified as part of a drainage network.  Significant 

drainage occurred prior to 2003 in my study area; however, I found negligible evidence of 

additional drainage after 2003.  

Basin area 

Within a catchment, I defined the basin as the topographic depression that collects 

surface water and which is isolated from basins of other wetlands of an equal or more permanent 

hydroperiod.  I calculated the maximum potential water surface area of each basin using the 

high-resolution DEMs (3 m pixel lidar or 5 m pixel IfSAR) to find the elevation at which water 

flows out of the basin (i.e., spill point) and then delineated the area at that spill point elevation 

within the basin.  Because I predicted that wetlands in basins that were near full or that were full 
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would have less surface area dynamics, I calculated the proportion of the basin that the focal 

wetland filled at the start of each climate phase.  I used a logit transformation of the proportion-

basin-full variable × 0.1 for use in my analysis. 

Water surface area 

  I delineated water surface area for each surveyed wetland by photointerpretation of 

National Agriculture Imagery Program (NAIP; U.S. Department of Agriculture) aerial imagery 

for 2003–2006 and 2009–2010 (McCauley et al. In Review).  Photointerpretation was performed 

while images were viewed as panchromatic instead of true-color, because they were done as part 

of a larger study that involved panchromatic imagery (see McCauley et al. In Review).  Where 

the waterline was obscured by emergent vegetation, the waterline was approximated to be 

halfway between the emergent-vegetation to open-water interface and clearly identifiable upland.  

NAIP imagery was not available for 2007 and 2008.  For those years I used wetland water 

surface area delineated once in either 2007 or 2008 using high-resolution digital elevation model 

(DEM; source data: 1 m pixel lidar; Data available from the U.S. Geological Survey) or ~1.25 m 

pixel interferometric synthetic aperture radar (IfSAR) orthorectified image (Intermap 

Technologies, Inc., Englewood, Colorado). 

  I calculated the rate of increase in water surface area for each wetland during each 

climate phase as the natural logarithm of the quotient of final surface area divided by the initial 

surface area.  For this calculation I used the maximum surface area from the wet period and the 

minimum surface area from the dry period.  The rate of increase was useful as a response 

variable in my model because it allowed me to evaluate temporal dynamics, in a way that is 

similar to that used in population biology (Hastings 1997). 
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Maximum depth 

 Depth of a wetland, along with topography (see Bank Slope below), can be used to 

describe wetland basin shape and how water volume is distributed within the basin.  To account 

for the relationship of surface area and depth, I measured water depth (±0.1 m) at four locations 

in each wetland.  Locations were along randomly selected transects at 60 m from the shoreline or 

emergent vegetation ring toward the center of the wetland.  I used the maximum observation 

from the initial survey in 2004 or 2005 in my analysis. 

Bank slope 

 I calculated the bank slope of each wetland because I expected water-volume-to-surface 

area relationships to differ with varying bank slopes.  Wetlands with steeper sides would have 

smaller changes in surface area with added volume than wetlands with flatter sides.  I recorded 

the average elevation of the water surface for all wetlands in 2007 or 2008 (the driest years) and 

in 2010 (a wet year) using high-resolution DEMs.  I calculated the average radius of each 

wetland polygon in 2007 or 2008 and 2010 using surface area calculations of each wetland 

(radius = �area/π ).  I calculated bank slope as change in water surface elevation from 2010 to 

2007 or 2008 divided by the change in radius from 2010 to 2007 or 2008.  On average, 2010 was 

a wetter year and water levels were higher than in 2007 or 2008 but in those rare cases (~5%) 

where 2010 water levels were actually lower than in 2007 or 2008, another wetter year was 

substituted. 

Land use 

I indexed current agricultural impacts within the catchment by calculating the proportion 

of the upland that was cropland (i.e. row crop or small grains).  Each quarter-quarter section (~16 

ha) within the catchment was classified as cropland if ≥50% of the upland area was determined 
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to be cropped from photointerpretation of 2003 or 2004 NAIP imagery (see McCauley et al. In 

Review).   

Statistical Analyses 

I tested whether catchment drainage had a progressive-chronic effect on the rate of 

surface area increase within wetlands during a drying phase and a wetting phase.  In my analysis, 

I was primarily interested in a catchment-drainage-by-climate-phase interaction.  If the 

hydrologic response is dependent upon the amount of consolidation drainage in the catchment 

then the slope of the model fitted line should be different from zero indicating a progressive-

chronic effect (Figure 2.2).  McCauley et al. (In Review) found a positive relationship between 

wetland size and consolidation drainage in the catchment when examining within wetland 

variation from historical to current eras.  However, I found no support for correlation between 

wetland water surface area at the start of each phase and amount of consolidation drainage in the 

catchment (|r| < 0.01), which indicated that wetland size was not already confounded by drainage 

in my random sample of wetlands that had high variation in size.   

I used mixed-effects regression analysis to evaluate the influence of catchment-drainage-

by-climate-phase interaction on water-level change (lme4 package in R statistical computing 

environment; R Development Core Team 2010; Bates et al. 2011).  I evaluated covariate suites 

within my a priori model by comparing versions of the model created with all combinations of 

covariates suites (16 combinations).  Covariate suites included: hydrogeomorphic (logit 

transformed proportion basin full, catchment-drainage-by-basin-full interaction, and initial water 

depth), geomorphic (log of bank slope and log of catchment area), land use (percent cropland), 

and climate (change in climate index during the phase).  I did not find evidence of collinearity 

among continuous fixed effect variables within the full model (|r| ≤ 0.26).  I also included an 
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interaction of each covariate by climate phase because I expected the rate of increase to be of 

opposite sign between climate phases.  I identified wetland as a random error term to account for 

the repeated measure across climate phase and to ensure proper variance estimates for fixed 

effects of all models.  I interpreted and made predictions from the most parsimonious 

combination of covariate suites, which I evaluated by the number of estimated parameters and 

Akaike’s Information Criterion adjusted for small sample size (AICc; Burnham and Anderson 

2002).  I evaluated model goodness-of-fit using the squared correlation coefficient (r2) between 

observations and model fitted values.  Confidence intervals for fixed effect estimates were 

calculated at the 85% level to best match criteria used during covariate suite selection using 

AICC (Arnold 2010).   

I plotted the effect of catchment drainage on the rate of increase during the wetting phase 

and rate of decrease (rate of increase × –1) for the drying phase separately for three levels of 

basin full.  I sliced the basin full variable at the 25th, 50th, and 75th percentiles, representing less 

full, moderately full, and near full, respectively.  I plotted the predicted effect of catchment 

drainage on rate of change (increase or decrease, appropriately) for wetlands for a spectrum of 

percent basin full to illustrate the degree of net balance in water budgets through drying and 

wetting phases.  For the drying phase I plotted effect estimates for 3–90% of basin full, 

representing the 1st to 75th percentile of my data, because this range represents wetlands that 

would likely remain isolated from downstream surface water connections throughout the drying 

phase.  For the wetting phase I plotted effect estimates for 1–34% of basin full, representing the 

1st to 25th percentile of my data, because these wetlands remained below the spill point 

throughout the wetting phase; therefore, the estimates were not influenced by water spilling out 

of the basin.  Additional covariates were set to median values in all effect plots. 
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Results 

 My analysis included a total of 122 wetlands of which catchment sizes ranged from 4–

200,900 ha and the mean was 3,686 ha (median = 394 ha).  Percent of catchment area that was 

drained wetland ranged from 0–13% (median = 1.1%).  Basin area ranged from 1.7–6,646 ha and 

the mean was 182 ha (median = 34 ha).  On average, at the start of the drying period basins were 

67% full (SD = 27, 25th percentile = 51% full, median = 67% full, 75th percentile = 90% full) and 

at the start of the wetting period basins were 53% full (SD = 27, 25th percentile = 34% full, 

median = 50% full, 75th percentile = 73% full).  Percent of upland that was cropland averaged 

52% and ranged from 0–100% (median = 55%).  The mean wetland water surface area was 65.4 

ha (SD = 129. 8, median = 24.5 ha) during the two wet periods and 54.7 ha (SD = 118.2, median 

= 17.4 ha) during the dry period.  My climate index ranged from -1.6 to 2.0.  Mean climate index 

for each period was different from zero in the expected direction for the climate period (Figure 

2.4).  The mean differences in climate index were -0.83 (SE = 0.03) and 0.89 (SE = 0.04) during 

the drying and wetting phases, respectively.   

My final model of wetland surface area dynamics included the treatment effect of 

catchment-drainage-by-climate-phase interaction, hydrogeomorphic and climate covariate suites, 

and the random error term (Table 2.1).  My model explained 52%, 13%, and 51% of the 

variability within the observations overall, within the drying phase, and within the wetting phase, 

respectively.  Model parameter estimates are reported in Table 2.2.  Catchment drainage when 

focal wetland basins were less full was positively correlated with rate of increase in water 

surface area during the wetting phase and negatively correlated with rate of decrease in water 

surface area during the drying phase (Figure 2.5A).  Catchment drainage was not correlated with 

rate of water surface area change during either the drying or wetting phase where focal wetlands 



26 
 

moderately filled their basin (Figure 2.5B).  Catchment drainage when focal wetland basins were 

nearly full was negatively correlated with rate of increase in water surface area during the 

wetting phase and positively correlated with rate of decrease in water surface area during the 

drying phase (Figure 2.5C).  The rate of change in wetland surface area became increasingly 

different between the drying and wetting phases with increased catchment drainage (Figure 2.6). 

Discussion 

My results indicate that past wetland drainage in a catchment can have a progressive-

chronic effect on drying and wetting phases of remaining wetlands and potentially on overall 

wetland hydrology throughout the Prairie Pothole Region.  This effect appears to manifest itself 

in an unbalancing of wetland water budgets, which culminates in a pattern of increasing wetland 

size over consecutive wet–dry climate fluctuations.  This result indicates that the full impact of 

historical wetland drainage has not yet been realized and that further degradation of wetland 

ecosystems is likely because catchment drainage appears to influence succession of remaining 

wetlands toward lake-like hydroperiods, as wetlands grow to and maintain at their spill point 

elevations.  This finding is a significant piece of information that could inform decisions about 

wetland restoration, because inaction will lead to further degradation of semipermanent wetland 

ecosystems.  Here, I propose a mechanism by which to explain previously observed trends that 

indicate an increase in the size of wetlands compared to historical size within drained catchments 

(McCauley et al. In Review). 
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Figure 2.4.  Mean standardized precipitation-evapotranspiration climate index values and 95% 
confidence intervals from all surveyed wetlands for each climate period of the study.  A value 
above zero to be a wet period and a value below zero to be a dry period.  Arrows (gray) indicate 
the climate phases between climate periods. 
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Table 2.1.  Covariate suite selection results from an a priori model used to examine the effect of 
catchment drainage on water-level dynamics in wetlands of North Dakota during a drying and a 
wetting phase, included are: model log likelihood (LL), number of estimated parameters (K), 
Akaike’s Information Criterion for small sample size (AICC), increase over lowest AICC 
(∆AICC), and Akaike model weight (wi) for combinations of covariate suites (wi ≥0.01). 

Covariate Suites LL K AICC ∆AICC wi 

Hydrogeomorphic, Climate   -118.78 13 265.15 0.00 0.45 

Hydrogeomorphic,  
Land Use, Climate   

-116.76 15 265.64 0.49 0.35 

Hydrogeomorphic -122.70 11 268.55 3.40 0.08 

Hydrogeomorphic, 
Land Use 

-120.51 13 268.59 3.44 0.08 

Hydrogeomorphic, 
Geomorphic, Land Use 

-117.56 17 271.83 6.68 0.02 

All Covariate Suites -115.44 19 272.27 7.12 0.01 

No Covariate Suites -166.54 6 345.43 80.28 0.00 
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Table 2.2.  Estimated coefficients (β�), standard errors (SE), and lower (LCL) and upper (UCL) 
85% confidence limits for fixed effects within the most parsimonious model used to examine the 
effect of catchment drainage on water-level dynamics in wetlands of North Dakota during 
climatic drying and wetting phases.  A colon indicates an interaction between variables. 

Fixed Effects β� SE LCL UCL 

Intercept -0.0444 0.1947 -0.3247 0.2360 

Catchment Drainage -0.2392 0.0427 -0.3006 -0.1777 

Basin-Full 0.1457 0.0546 0.0671 0.2243 

Maximum Depth 0.2412 0.0537 0.1639 0.3185 

Climate 0.2200 0.0981 0.0787 0.3612 

Wetting Phase 0.0489 0.2638 -0.3309 0.4288 

Catchment Drainage : 
Wetting Phase 

-0.0158 0.0209 -0.0460 0.0143 

Basin-Full :  
Wetting Phase 

-0.2235 0.0646 -0.3165 -0.1305 

Catchment Drainage : 
Basin-Full 

-0.0901 0.0162 -0.1135 -0.0668 

Maximum Depth : 
Wetting Phase 

-0.3389 0.0770 -0.4498 -0.2280 

Climate : 
Wetting Phase 

-0.0588 0.1373 -0.2564 0.1388 
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Figure 2.5.  Model predicted effects of past wetland drainage on the rates of increase and 
decrease in wetland water surface area (85% confidence intervals) derived from observations of 
semipermanent and permanent wetlands in North Dakota during a recently wet–dry climate 
fluctuation. Predictions were made for focal wetlands that were (A) less full, (B) moderately full, 
and (C) almost full, determined by 25th, 50th, and 75th percentiles of the data for the drying phase 
(51%, 67%, and 90%), and for wetting phase (34%, 50%, and 73%), respectively.  Solid lines 
represent estimates with a slope different from zero and dashed lines represent estimates with a 
slope not different than zero. 

R
at

e 
o

f I
n

cr
ea

se

0.
0

0.
5

1.
0 A Less full basin

Wetting Phase

0.
0

0.
5

1.
0

Drying Phase

R
at

e 
o

f D
ec

re
as

e

R
at

e 
o

f I
n

cr
ea

se

0.
0

0.
5

1.
0 B Moderately full basin

0.
0

0.
5

1.
0

R
at

e 
o

f D
ec

re
as

e

R
at

e 
o

f I
n

cr
ea

se

0 3 6 9 12

0.
0

0.
5

1.
0 C Near full basin

% Catchment Drainage
0 3 6 9 12

0.
0

0.
5

1.
0

R
at

e 
o

f D
ec

re
as

e

%  Catchment Drainage



31 
 

 
Figure 2.6.  Model predicted effects of past wetland drainage on the rate of change in wetland 
water surface area over a spectrum of basin fullness values for remaining focal wetlands derived 
from observations of semipermanent and permanent wetlands in North Dakota during a recent 
wet–dry climate fluctuation.  The drying phase is represented by the lighter gray color and 
wetting phase by the darker gray color.  Predictions for the drying phase were plotted over a 
range of less to moderately full basins (3–90%), because this range represents wetland dynamics 
less likely to be influenced by artificial drainage pathways in the upper portion of the basin.  
Predictions for the wetting phase were plotted over a range of less full basins (1–34%), because 
these wetlands remained below the spill point throughout the wetting phase.  Wetland water 
budgets are interpreted to be unbalanced where rate of change estimates do not overlap.   

 
In this natural experiment, I considered wetlands with <1% of the catchment area drained 

(n = 58) a control group.  I observed similar dynamics between the drying and wetting phases for 

wetlands with minimal drainage, which supports the notion that each climate phase I examined 

had similar magnitude of influence on wetland hydrology.  However, the water budget within 

wetlands were increasingly unbalanced across drying and wetting phases where previous 
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drainage in catchments was >2% of area.  I suspect that wetlands receiving consolidation 

drainage water from historical drainage efforts will continue to increase in size with each 

subsequent wetting phase, until they reach their spill point and then stabilize.  This effect is most 

evident in wetlands that have not yet filled to their natural or artificial spill point.  Whereas, in 

wetlands that were more full the rate of increase in water surface area decreased during the 

wetting phase and the rate of decrease in water surface area increased during the drying phase, 

likely due to water spilling out of the basin through either the natural or artificial spill points.  

My observations support the hypothesis that consolidation of wetlands leads to semipermanent 

and permanent wetlands in drained catchments experiencing a successional change toward a 

more lake-like condition which likely has regional-scale implications on both the integrity of 

wetland ecosystems and social benefits derived from services provided by wetlands (Anteau 

2012).  

This natural experiment demonstrates a case where legacy effects on ecosystems can 

continue to degrade the integrity of an ecosystem after a disturbance activity has ceased and that 

lack of management action likely will result in further deterioration of ecosystem function.  

Identification of historical drainage of wetlands within the catchment of remaining wetlands 

could inform the prioritization of conservation efforts to initially focus on remediation of 

wetlands that have not yet reach their basin spill points, and restoring complexes of less-

permanent wetlands in the upper catchment to improve surface water reduction through natural 

processes (Weller 1988; Galatowitsch and van der Valk 1994; Knutsen and Euliss 2001).  Such 

restoration would then likely restore more natural water-level dynamics within wetlands lower in 

the catchment and improve hydrologic processes that maintain ecological integrity of wetland 

systems and provide services to society (Anteau 2012).  This case study also demonstrates the 
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importance of 1) re-evaluating previous studies that initially evaluated the condition of an 

ecosystem before and after a disturbance, because the full effect of the disturbance may continue 

beyond the temporal scale of the initial study, or 2) structuring analyses to evaluate the rate of 

environmental change in relation to either historical rate or to a contemporaneous rate of a 

complementary ecosystem process.  In my case, comparing wetting and drying rates as 

complementary processes in wetlands within modified catchments versus unmodified catchments 

allowed me to evaluate long-term effects of consolidation drainage and infer the overall effect on 

balance of wetland water budgets. 

Agricultural intensity has increased in the Prairie Pothole Region since the 1800s, 

generally following a southeast to northwestern pattern (Samson and Knopf 1994).  As such, 

there has been a varying period of catchment modification (Dahl 1990).  In a recent evaluation of 

productivity in more-permanent wetlands within the region, productivity appeared to be 

decreased overall and showed a spatial pattern of stronger declines in the southeast compared to 

the northwest (Anteau and Afton 2011).  My results suggest one potential mechanism for that 

loss of productivity was the progressive-chronic effect of consolidation drainage, as wetlands in 

landscapes that have been modified for longer have had more time to reach their spill points and 

stabilize.  In North Dakota, I found 39% of more-permanent wetlands had sufficient drainage 

within their catchments to unbalance their water budget and 23% of those wetlands to have filled 

>90% of their maximum area.  The remainder of the wetlands in drained catchments likely will 

reach spill-over levels if management actions are not taken, but if the frequency or intensity of 

wetting phases increases due to climate change this process likely would be accelerated.  At 

either rate, increased wetland size and reduced water-level fluctuation may result in a decline in 

productivity similar to those observed in Iowa and Minnesota (Anteau and Afton 2011).  
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My findings also corroborate the idea that drainage of less-permanent wetlands has led to 

greater amounts of water consolidated into fewer basins and those basins tend to be larger and 

more stable than they were historically (Krapu et al. 2004; Anteau 2012; McCauley et al. In 

Review).  Consolidation drainage networks essentially speed the flow of surface water thereby 

reducing infiltration into groundwater (Winter 2003).  Furthermore, more inputs into a wetland 

tends to reduce the surface area to volume ratio, which greatly reduces evapotranspiration 

(Winter 1989).  Together, these mechanisms suggest that consolidation of water inhibits the 

natural processes that would reduce surface water within a catchment (LaBaugh et al. 1987; 

Winter and Rosenberry 1995; Winter 2003).  Consequently, more surface water is stored in 

larger wetlands and when those wetlands reach spill-over levels more surface water flows out of 

the catchments into larger watersheds.  Accordingly, consolidation drainage can convert non-

contributing catchments into contributing catchments of larger watersheds, thus becoming 

conducive to downstream flooding.  

Increased wetland size and stabilized water levels can have deleterious effects on the 

integrity of wetland ecosystems and the services they historically provided.  As wetlands 

increase in size they flood new habitat that provides nutrients to drive wetland productivity 

through decomposition of vegetation and flooding of nutrient-rich soils.  However, in modified 

catchments once wetland water levels reach basin spill point elevations, water levels are likely to 

become stabilized.  Stabilization of water levels could reduce availability of nutrients in the 

system, because during sustained lake phases nutrients get tied up in anoxic sediments.  

Historically, these would become available again if the wetland draws down and sediments 

oxidize (Euliss et al. 1999).  Stabilized water levels also might drive a change in ecological 

community structure because species more adapted to stable conditions become dominant where 
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there is a lack of water fluctuation (Van der Valk and Davis 1980).  For example, Typha spp. 

proliferate in stable water environments (Swanson 1992; Shay et al. 1999; Boers and Zedler 

2008); and, higher, more stable water levels allow fish populations to become established in 

wetlands where they were previously controlled by inhabitable conditions during drawdown 

periods (Peterka 1989; Anteau and Afton 2008; Herwig et al. 2010).   

Prairie pothole wetlands are an important resource for migratory waterbirds during spring 

and fall migration and during the breeding season.  Many waterbirds use these wetlands as 

stopover sites where they rely on invertebrates to meet energy requirements of long migration 

flights, and for building energy and nutrient supplies for breeding in the region or in other areas 

on the continent (Batt et al. 1989; Swanson and Duebbert 1989; Anteau and Afton 2006, 2011).  

Consequently, stabilization of water levels after chronic increases in water level is a concern for 

waterbird conservation because of the likely decreases in wetland productivity.  Indeed, drainage 

of less-permanent wetlands and stabilization of water levels in more-permanent wetlands may 

already be affecting waterbird populations (Niemuth et al. 2006; Anteau and Afton 2011; 

McCauley & Anteau unpublished manuscript) and potentially other native inhabitants of these 

wetlands, such as amphibians (Balas et al. 2012; Herwig et al. 2013; Mushet et al. 2014).    

Consolidation drainage has been implicated in water-level increases in wetlands that 

receive drainage water (Anteau 2012; McCauley et al. In Review), and my results suggest that 

past drainage causes chronic flooding effects.  As more-permanent wetlands continue to increase 

in area, surrounding uplands are at higher risk for being flooded.  Further, remaining wetlands 

that reach their spill point have reduced or no ability to provide flood protection and flood waters 

may then cascade into larger-scale watershed flooding problems.  My findings suggest that once 

these basins fill, catchments surrounding those basins transition from a non-contributing to 
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contributing area of larger order watersheds.  Thus, landscapes within the Prairie Pothole Region 

are shifting from catchments that may be only intermittently connected at the surface to larger-

order watersheds with much more hydrologic connectivity.  While I think it is likely this shift is 

occurring wherever there is consolidation drainage, there are opportunities to test this hypothesis 

in larger watersheds of North Dakota (e.g., Devils Lake, Red River of the North, or Missouri 

River) that have recently experienced flooding of increased intensity and magnitude.  Using 

techniques such as those outlined by McCauley and Anteau (2014), more detailed study of 

formerly isolated catchments that are now contributing to larger watersheds could provide more 

accurate information regarding the impact of wetland drainage on flooding within these larger 

watersheds.  This question deserves thorough investigation because the reduction in flood control 

that wetlands can provide due to consolidation drainage has probably had a great economic cost, 

and those costs will continue to come in the form of inundated property, damaged infrastructure, 

and new flood control infrastructure lower in the watershed. 

Progressive-chronic effects of anthropogenic modifications to the environment are likely 

present throughout other systems.  For example, installation of dams on river systems likely has 

a static-chronic effect on flows if water management is consistent, but those dams may have a 

progressive-chronic effect on sediment accumulation in reservoirs and river-bed incision.  

Anthropogenically induced environmental change continues to alter services that ecosystems 

provide to society, while reducing the integrity of the ecosystem, which likely will result in 

permanent ecosystem change.  There is a fundamental difference between managing the 

cumulative harmful effects of continued anthropogenic disturbance to ecosystems, and 

identifying and managing legacy effects of past disturbances that continue to degrade 

ecosystems.  Fortunately, identifying the positive feedback mechanisms within ecosystems that 
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were initiated by historical disturbances could help land managers improve their ability to 

develop management strategies to counteract these disturbances on managed ecosystems.  
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CHAPTER 3.  IS CONSOLIDATION DRAINAGE AN INDIRECT MECHANISM FOR 

INCREASED ABUNDANCE OF CATTAIL IN NORTHERN PRAIRIE WETLANDS? 

Abstract 

Plant communities are structured by environmental conditions and the variability in those 

conditions.  Within northern prairie wetlands these conditions are primarily driven by water 

levels and water chemistry.  Therefore, disturbances to wetlands or their catchments that disrupt 

water-level fluctuations in response to wet–dry climatic periods have the potential to alter natural 

vegetative communities in favor of species that proliferate in stable environments, such as cattail 

(Typha spp.).  I evaluated the effect of water-level dynamics during a recent wet–dry climate 

fluctuation on cattail coverage within wetlands situated in catchments with varying land use and 

amounts of wetland drainage.  I found that water depth increased more where wetlands filled less 

of their topographic basin (β� = -0.006 ± 0.002 SE), had steeper bank slopes (β� = 0.124 ± 0.042 

SE), and were in larger catchments (β� = 0.069 ± 0.032 SE).  Proportion of the wetland covered 

by cattail was negatively correlated with increased water depth (β� = -0.090 ± 0.027 SE), bank 

slope (β� = -0.067 ± 0.013 SE) and wetland area (β� = -0.039 ± 0.013 SE).  Existing evidence 

suggests that drainage of wetlands within catchments of remaining wetlands causes water levels 

to progressively increase until the topographic basin fills and then water levels stabilize.  Thus, 

the eventual filling and stabilizing of wetlands caused by consolidation drainage offers a 

potential mechanism for increased cattail coverage observed on the northern prairie landscape.  

Increased cattail coverage within a wetland reduces the quality of the wetland to support diverse 

plant, invertebrate, and waterbird communities.  



45 
 

Introduction 

It has been suggested that the prevalence of monotypic stands of cattail (Typha spp.) has 

increased for prairie wetlands (Kantrud 1992; Swanson 1992; Anteau and Afton 2008), which 

has implications for abundance and quality of food resources and foraging habitat for waterbirds, 

particularly shorebirds.  When shallow-water zones become dominated by cattails, wetlands have 

less shallow-water foraging habitat, a reduction in or absence of submerged aquatic vegetation, 

and a reduction in the variety of decomposer organisms—including macroinvertebrates that are 

important food resources for waterbirds (Voigts 1976; Kantrud 1986).  Monotypic stands of 

cattails within wetlands may eliminate foraging and roosting habitat needed by migrating and 

breeding shorebirds and waterfowl (Weller and Spatcher 1965; Voigts 1976; Kantrud 1986; 

Anteau 2012).  Landscape modifications likely have altered natural wetland hydrology that 

included water-level fluctuation, changed sedimentation and nutrification, or introduced species 

within wetlands (Galatowitsch et al. 2000; Gleason et al. 2003; Anteau 2012).  Such changes 

might be responsible for greater cattail abundance and resultant degradation of many wetland 

ecosystems across North America (Galatowitsch et al. 1999).  Therefore, it is important to 

understand how landscape modifications have influenced the abundance of cattails and the 

concomitant value of those wetlands to waterbirds to inform ongoing conservation efforts to 

reverse the trend of increasing cattail encroachment in wetlands of the Prairie Pothole Region. 

Hydrologic fluctuations in response to climate variability help shape floral community 

structure of prairie wetlands.  While plant community composition shifts in response to wet–dry 

climate periods, the overall community structure is dominated by floral species adapted to 

dynamic hydrologic conditions (Stewart and Kantrud 1972; Grace and Wetzel 1981; LaBaugh et 

al. 1987; Kantrud et al. 1989; van der Valk 2005).  Higher and more-stable water regimes may 
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shift emergent communities toward cattail-dominated systems because cattails proliferate in 

more-stable environments (Swanson 1992; Shay et al. 1999; Boers and Zedler 2008).   

Disturbances within wetlands and their surrounding catchment that increase 

sedimentation and nutrient loading into wetlands or stabilize water levels may create conditions 

more favorable to cattail invasions in prairie pothole wetlands (Wang et al. 1994; Gleason and 

Euliss 1998; Shay et al. 1999).  Increased sedimentation can decrease wetland depth through 

addition of nutrient-rich soil while reducing or eliminating competing wetland plant species 

(Jurik et al. 1994; Gleason and Euliss 1998).  These conditions favor development of monotypic 

stands of cattail (Gleason and Euliss 1998; Galatowitsch et al. 1999; Shay et al. 1999).  Further, 

additional nitrogen inputs from uplands can promote growth and expansion of cattail, especially 

where nitrogen is limiting (Shay et al. 1999).  Moreover, stabilization of water levels can 

increase soil release of phosphorus and increase uptake by cattail resulting in enhanced growth 

(Boers and Zedler 2008).  Nutrient enrichment of wetlands with high and stable water-levels can 

lead to changes in vegetation structure and consequently changes in the macroinvertebrate 

community (Voigts 1976; McCormick et al. 2004) because species that are best adapted to 

exploit available nutrients will gain a competitive advantage over those adapted for a more 

oligotrophic environment.   

In the Prairie Pothole Region of North Dakota, cattail was previously found during 2002 

to be present in 28% of wetlands and averaged 37% areal coverage within wetlands that 

contained cattail (Ralston et al. 2007).  It is likely that monotypic stands of cattail will continue 

to increase in occurrence and coverage within wetlands where hydrology has been modified and 

uplands disturbed (Kantrud 1992; Swanson 1992; Anteau and Afton 2008); therefore, there is a 

need to quantitatively evaluate factors that may be contributing to wetland conditions that are 
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favorable to increased cattail coverage.  Accordingly, I examined the influence of hydrologic and 

land-use factors on coverage of cattail within semipermanent and permanent wetlands.  I 

expected cattail coverage to be greater within wetlands where water levels were more stable and 

where agricultural land-use modified uplands with drainage networks and tillage. 

Methods 

Study Area 

 I returned to wetlands within the Prairie Pothole Region of North Dakota (Figure 3.1) that 

were previously randomly selected and surveyed once in 2004 or 2005 (hereafter, 2004/05) by 

Anteau and Afton (2008; n = 153).  Wetlands were randomly selected within a hierarchal 

sampling design of three regions, three sub-regions, clusters of three townships, and three 

wetlands within each township (Anteau and Afton 2008).  Accordingly, I included township as a 

random error term to account for this clustered design.  These were lacustrine semipermanent 

and shallow-water permanent wetlands (Cowardin et al. 1979) that must have had an open-water 

area larger than 120 m across to be surveyed in 2004/05.  In 2004/05, if reselection in the field 

was necessary, the nearest suitable semipermanent wetland was surveyed.  In April and May of 

2011, I returned to 126 of the original 153 wetlands.  Based on the National Wetland Inventory 

classification (NWI; U.S. Fish and Wildlife Service 2003), 67% of wetlands surveyed were 

semipermanent, 3% seasonal, and the rest were permanent wetlands or shallow-water lakes.  

Those wetlands classified by NWI as seasonal were wetlands reselected in the field in 2004/05 

that were more characteristic of semipermanent wetlands at time of field assessment. 

My selection of wetlands was not completely random in regards to cattail coverage 

within semipermanent and permanent wetlands throughout the region.  My selection was 

confined to more-permanent wetlands that had at least 120 m of open water to address objectives 
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of another study (Anteau and Afton 2008).  Therefore, my observations under represent cattail 

coverage across the region and should not be used for such estimation.  However, my data set 

should provide a good basis for understanding cattail dynamics with the exception of not 

containing information for completely choked wetlands.  

 

 
Figure 3.1.  North Dakota study area showing townships where wetlands were surveyed during 
early spring of 2004, 2005, 2010 and 2011.  Shaded areas are three physiographic regions of the 
Prairie Pothole Region: Red River Valley (RRV), Northern Glaciated Plains (NGP), and 
Missouri Coteau (COT). 

 

Spring Wetland Surveys and Data Preparation 

Water depth 

To estimate change in depth among surveys of 2004/05 (Anteau and Afton 2008) and 

surveys of 2011, I measured water depth (± 0.1 m) at 10 locations estimated to be 10 m into open 

water from either the shoreline or emergent vegetation to open-water interface for 2004/05.  
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When waves were present, I recorded the average depth between wave crests and troughs.  Prior 

to field work, I delineated the shoreline or emergent vegetation to open-water interface of each 

wetland using imagery (National Agricultural Imagery Program, U.S. Department of 

Agriculture; hereafter NAIP) acquired in the summer (July) prior to each spring survey 

conducted by Anteau and Afton (2008).  I used the imagery from the previous year because it 

better represents the location of the emergent vegetation to open-water interface that Anteau and 

Afton (2008) used to locate their sampling locations.  I digitized the interface by using a 

geographic information system (GIS) at a scale of 1:5,000.  I offset (i.e. buffered) the digitized 

open-water interface by 10 m in the direction of the wetland center to approximate locations of 

2004/05 sampling.  I derived my 10 random points from the 10-m buffer, but I constrained point 

locations so there is a minimum distance of 40 m between points.  I navigated to survey locations 

that were pre-loaded onto a GIS data logger (Trimble GeoXT, Trimble Navigation, Sunnyvale, 

CA).  Survey locations found within the emergent vegetation ring were recorded as such, 

because different dynamics of sedimentation and accumulation of organics were expected.  

Emergent vegetation 

I estimated the width of emergent vegetation coverage (0, 1–4, 5–10, 11–30, 31–60, or 

>60 m) and the proportion (± 0.1) of emergent vegetation that was cattail at 10 randomly 

selected transects that extended perpendicular from the shoreline through the random points 

where water depth measurements were taken to the center of the wetland.  I calculated an 

average width of cattail coverage for each wetland using the midpoint value of the 10 categorical 

estimates of emergent vegetation coverage (maximum value of 90 m) multiplied by the 

proportion that was cattail.  Finally, I calculated the area of cattail coverage within each wetland 
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by using a GIS to create a polygon from the perimeter of the wetland measured using 2010 

imagery (see below) extending inward the distance of the average width of cattail coverage.   

Land use 

I classified current agricultural impacts immediately surrounding each wetland using 

ground observations in 2011.  I used GIS software in the field to attributed empty polygon 

outlines of land-cover data (Habitat and Population Evaluation Team 1996) based on current 

observations with one of the following categories: native grassland, restored grassland, unknown 

grassland, hayland, cropland, shrubs, trees, developed, barren, or wetland.  I calculated the 

proportion of cropland for the upland area that was both within the defined catchment (see 

below) and within 400 m of the subject wetland.  I also estimated the width of upland grass 

buffer (0, 1-4, 5-10, 11-50, >50 m) between any development or agricultural land use and the 

wetland.  In my analyses I used the midpoint of categorical estimates, with maximum value of  

75 m. 

Water surface area 

 I used water surface area delineated for each surveyed wetland by McCauley et al. (In 

Review) using photointerpretation of NAIP aerial imagery for 2003–2006 and 2009–2010.  

Photointerpretation was performed while images were viewed as panchromatic instead of true-

color, because they were done as part of a larger study that involved some panchromatic imagery 

(see McCauley et al. In Review).  Where the waterline was obscured by emergent vegetation, the 

waterline was approximated to be halfway between the emergent-vegetation to open-water 

interface and clearly identifiable upland.  NAIP imagery was not available for 2007 and 2008.  

For those years I used wetland water surface area delineated once in either 2007 or 2008 using 

high-resolution digital elevation model (DEM; source data: 1 m pixel lidar; Data available from 
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the U.S. Geological Survey) or ~1.25 m pixel interferometric synthetic aperture radar (IfSAR) 

orthorectified image (Intermap Technologies, Inc., Englewood, Colorado). 

Catchments 

I used wetland catchments as an index of watershed derived wetland complexes defined 

as the portion of the landscape in which surface water flows into a focal wetland, and included 

more-intermittent wetlands and their catchments (McCauley and Anteau 2014; McCauley et al. 

In Review).  Catchments were derived for each of the surveyed wetlands using high resolution 

DEMs (3 m pixel lidar or 5 m pixel IfSAR) and surface hydrology modeling tools (McCauley 

and Anteau 2014; McCauley et al. In Review).  Some catchments (46%) that were large or 

highly irregular in shape were truncated to a 2.5 km maximum radius from the wetland basin for 

logistical reasons associated with assembling landscape variables, such as amount of wetland 

area drained.  The 2.5-km radius encompassed >90% of the total catchment area for 68% of 

catchments.  Landscape conditions within these 2.5-km truncated catchments should represent 

the condition of the full catchment, and the conditions nearest the wetland basin likely influence 

the basin most.  Therefore, I assumed the 2.5-km-truncated catchment provided a reasonable area 

to evaluate impacts of land use in our system and are an improvement over the simply buffering 

around a wetland a set distance, a common practice (McCauley and Anteau 2014). 

Catchment drainage 

I used estimates of the percent catchment area that was drained wetland during 2003–

2010 using multiple data sources, including: aerial photographs, DEM, NWI, and spatially 

explicit soil data (McCauley et al. In Review).  Wetlands were identified as drained if they were 

present in historical photographs (dating back to 1937) but not present in current photographs, or 

if the wetlands were identified as part of a drainage network.  Significant drainage occurred prior 
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to 2003 in our study area; however, there was negligible evidence of additional drainage after 

2003. 

I also recorded presence of drainage networks and connections between wetlands while in 

the field in 2011.  Surface-water connections include: inflow and outflow streams, ditches, 

culverts, and temporal connections between wetland basins.   

Basin area 

I defined a wetland basin as the topographic depression that collects surface water that 

which is isolated from basins of other wetlands of an equal or more permanent hydroperiod.  I 

measured the basin area to determine the maximum water surface area of a wetland that the basin 

could hold before the water would spill and flow out of the basin.  I used the high-resolution 

DEMs (3 m pixel lidar or 5 m pixel IfSAR) to find the spill point of the basin and then delineated 

the area at that spill point elevation within the basin.  Because wetlands in basins that were near 

full or that were full would have less surface area dynamics (Chapter 2), I calculated the 

proportion of the basin that the focal wetland filled at the start of each climate phase. 

Climate 

I used a fine-scale climate index (2.5 arc-minute) derived by Post van der Burg et al. (In 

Prep.) to estimate the spatially-explicit effect of climate on increase in water depth of wetlands.  

The climate index used a standardized precipitation-evapotranspiration index calculated from 

PRISM (Parameter-elevation Regression on Independent Slopes Model) Climate Group data 

(PRISM Climate Group 2002).  The temporal summary of the index that best explained water 

levels in the current era, and used here, incorporated climate conditions over the previous six 

years with a uniform average across years (Post van der Burg et al. In Prep.).  For each wetland, I 
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calculated the difference in climate index values from the wet period during 2003–2005 and wet 

period in 2009–2010. 

Statistical Analyses 

Water depth increase 

I examined the potential influence of climate, upland disturbance and wetland 

connectivity on increased in wetland depth from 2004/05 to 2011 using mixed-effects regression 

analysis (Package lme4 in R Statistical Computing Environment; R Development Core Team 

2010; Bates et al. 2011).  I created an a priori full model that included independent variables 

including: difference in climate index, percent catchment area that was drained wetland, 

presence/absence of wetland surface connections, percent surrounding upland that was cropland, 

basin full percent, natural logarithm of bank slope, and natural logarithm of catchment area.  I 

also included interaction terms for difference in climate index-by-catchment area because 

climate variability likely has a greater influence on water depth of wetlands in smaller 

catchments than on larger catchments, and for wetland drainage-by-basin full percent because 

water depth within wetlands that already filled their basins would be less influenced by drainage 

within the catchment than would wetlands that have potential for increased water depth.  I found 

no evidence of strong correlations among dependent variables within the full model (|r| ≤ 0.24).   

I evaluated variables in my a priori full model by comparing a one-variable-removed 

reduced model to the full model (Arnold 2010).  I assumed the removed variable was informative 

if the Akaike’s Information Criterion adjusted for small sample size (AICc; Burnham and 

Anderson 2002) of the reduced model was increased ≥2 points; all informative variables were 

compiled into a final reduced model.  I first evaluated each two-way interaction relative to the 

full model and removed any interactions not supported from the full model before conducting the 
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variable selection process for all main effect variables.  I specified township as a random error 

term.  I compared the final model to a null model using AICC to determine model adequacy 

(Burnham and Anderson 2002).  I evaluated the variation captured by the model from 

interpretation of the squared correlation coefficient from the observed and fitted values. 

Cattail coverage 

I evaluated how coverage of cattail within wetlands in 2011 may have been influenced by 

the change in water depth from 2004/05 to 2011, rate of water surface area change during a 

drying phase 2003–2005 to 2006–2008, wetland drainage within the catchment, and amount of 

upland that is cropland using a mixed effect regression analysis (Package lme4 in R Statistical 

Computing Environment; R Development Core Team 2010; Bates et al. 2011).  In my a priori 

full model I also included the natural logarithm of wetland area, percent of the topographic basin 

filled by the wetland, natural logarithm of bank slope as independent variables, and I included a 

cropland-by-upland buffer width interaction term because a grass upland buffer can mitigate the 

effects of surrounding land use on wetland quality (Anteau and Afton 2008; Anteau et al. 2011).  

I found no evidence of strong correlations among independent variables within the a priori full 

model (|r| ≤ 0.25), with the exception of cropland and upland buffer (r = -0.65) for which the 

interaction term was included.  I evaluated independent variables in the full model and created a 

reduced model using the variable selection method described above.  I specified township as a 

random error term, compared the final model to a null model using AICC to determine model 

adequacy (Burnham and Anderson 2002), and evaluated the variation captured by the model 

from the squared correlation coefficient of the observed and fitted values.  I plotted model 

predicted effects across the observed range of variable of interest and held other variables at 

median levels.  I used 85% confidence intervals for interpretation of importance for variables to 
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be more consistent with the threshold used during variable selection within the full model using 

AICC (Arnold 2010). 

Results 

Within the 126 wetlands visited in early spring of 2011 average water surface area was 

68 ha (median = 26 ha, range = 1–965 ha, SD = 132) in July of 2010.  Maximum water depth 

within wetlands in spring 2011 averaged 2.0 m (SD = 0.7), and on average, wetland water depth 

increased 1.1 m (SE = 0.1) from 2004/05 to 2011 (Figure 3.2).   We detected cattail on at least 

one transect at 51% of wetlands.  

 My final model used to explain increased water depth contained independent variables 

including: percent basin full, bank slope, catchment area, and difference in climate index (Table 

3.1).  This model explained 54% of the variation in water depth increase and was 16 AICC points 

better than a null model and held all of the Akaike model selection weight (wi).  Water depth 

increased more where wetlands filled less of their topographic basin, had steeper bank slopes, 

and were in larger catchments (Table 3.2).  Increase in wetland depth also occurred where 

climate index indicated wetter conditions (Table 3.2).   

My final model used to explain cattail coverage within wetlands contained independent 

variables including: increase in water depth, bank slope, and wetland area (Table 3.3).  This 

model explained 38% of the variation in cattail coverage among wetlands and was better than a 

null model (∆AICC = 43, wi = 0).  Proportion of wetlands covered by cattail was negatively 

correlated with increased water depth (β� = -0.090 ±0.027 SE; Figure 3.3).  Cattail coverage was 

also negatively correlated with bank slope (β� = -0.067 ±0.013 SE) and wetland area (β� = -0.039 

±0.013 SE). 
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Figure 3.2.  Histogram showing increased water depth within 126 more-permanent wetlands in 
North Dakota from 2004 or 2005 to 2011. 
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Table 3.1.  Reduction of independent variables from an a priori full model used to examine the 
effect of wetland setting and climate on water depth increase in more-permanent wetlands from 
2004 or 2005 to 2011 in North Dakota.  Changes in model log likelihood (∆LL), number of 
estimated parameters (∆K), and Akaike’s Information Criterion for small sample size (∆AICC) 
are reported for the model with that variable removed relative to the referenced full model.  We 
deemed covariates important (IMP) if their removal causes a >2 ∆K increase in AICC.  A colon 
indicates an interaction between variables.    

Variable Removed 
∆LL ∆K ∆AICc IMP 

Climate : Catchment Area a -0.9 -1 -0.6 No 

Drainage : Basin-Full a -0.1 -1 -2.2 No 

Basin-Full b -4.1 -1 5.8 Yes 

Bank Slope b -3.5 -1 4.7 Yes 

Climate b -3.3 -1 4.3 Yes 

Catchment Area b -2.4 -1 2.4 Yes 

Cropland b -0.4 -1 -1.5 No 

Surface Connection b -0.2 -1 -2.0 No 

Drainage b 0.0 -1 -2.4 No 

a Compared to full model: LL = -122.2, K = 12, AICC = 271.2 
b Compared to model with no interactions: LL = -123.2, K = 10, AICC = 268.3 
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Table 3.2.  Estimated coefficients (β�), standard errors (SE), and 85% lower (LCL) and upper 
(UCL) confidence limits for fixed effects within the final reduced model used to examine the 
effect of wetland setting and climate on water depth increase in more-permanent wetlands from 
2004 or 2005 to 2011 in North Dakota. 

Fixed Effects β� SE LCL UCL 

Intercept 1.4544 0.3046 1.0159 1.8930 

Basin-Filled -0.0063 0.0022 -0.0094 -0.0032 

Bank Slope 0.1243 0.0419 0.0640 0.1847 

Catchment Area 0.0687 0.0315 0.0233 0.1140 

Climate 0.3062 0.1234 0.1285 0.4839 
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Table 3.3.  Reduction of independent variables from an a priori full model used to examine the 
effect of hydrology and wetland setting on coverage by cattail within more-permanent wetlands 
in North Dakota in 2011.  Changes in model log likelihood (∆LL), number of estimated 
parameters (∆K), and Akaike’s Information Criterion for small sample size (∆AICC) are reported 
for the model with that variable removed relative to the referenced full model.  Covariates were 
deemed important (IMP) if their removal causes a >2 ∆K increase in AICC. 

Variable Removed a 
∆LL ∆K ∆AICc IMP 

Bank Slope -10.1 -1 17.8 Yes 

Depth Change -6.2 -1 9.9 Yes 

Wetland Size -3.9 -1 5.4 Yes 

Drying Rate -1.0 -1 -0.4 No 

Basin-Full -0.8 -1 -0.8 No 

Drainage -0.2 -1 -2.1 No 

Cropland b -0.5 -2 -3.8 No 

Upland Buffer b -0.4 -2 -4.0 No 

a Compared to full model: LL = -122.2, K = 12, AICC = 271.2 
b Required also removing the interaction of Cropland-by-Upland Buffer 
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Figure 3.3.  Model estimated effect (85% CI) of increase in water depth on cattail coverage 
within more-permanent wetlands in North Dakota. 

 

Discussion 

My results show that wetland water depth was greater during the recent wetting phase 

than that at the end of the previous wet period.  However, increases in water depth were limited 

within wetlands that had already filled, or nearly filled to their topographic basin.  Additionally, I 

observed a strong correlation between increased water depth and less cattail coverage, suggesting 
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cattail was eliminated where water depth increased.  This process of cattail elimination by 

flooding during wet periods is consistent with observations from other studies (Weller and 

Spatcher 1965; van der Valk 1994).  When combined with evidence that drainage of wetlands 

within catchments of remaining wetlands causes water levels to progressively increase with each 

wet–dry climate period until wetlands fill their topographic basin and then water levels stabilize 

(Chapter 2), cattail coverage is kept in check by increases in water level resulting from 

consolidation drainage, but ultimately will increase once water levels stabilize at their basin spill 

elevation.  

Cattail seed germination during drawdown and growth during re-flooding is part of the 

natural vegetative cycle in prairie pothole wetlands (Weller and Spatcher 1965; van der Valk and 

Davis 1978).  Wetlands that experience flooding and drawdown of equal amplitude should 

exhibit these natural vegetative cycles.  However, when hydrologic responses to climate 

variability are disrupted by disturbances within the wetland systems, then vegetative cycles are 

also likely to be disrupted resulting in monotypic stands of cattail (Van der Valk and Davis 

1980).  For example, where consolidation drainage has resulted in higher and more-stable water 

levels in remaining wetlands, cattail can become established at the fringes of high water levels.  

Cattail is not likely to be eliminated by flooding within wetlands that have filled their 

topographic basin because these wetlands have reached their spill-point at which they contribute 

to larger watersheds with additional inflow.  However, expansion of cattail toward the center of 

the wetland can occur by extension of the habitable zone as a result of sedimentation and 

accretion of organic debris (Waters and Shay 1992; Gleason and Euliss 1998; Shay et al. 1999).  

Accumulation of sediment and organic debris increases the rate of habitable zone expansion, 

ultimately reducing the water depth required to reach the basin spill point elevation.  Wetlands in 
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landscapes with high agricultural land use are likely to have greater rates of sedimentation and 

nutrient input (Gleason and Euliss 1998), than those surrounded by grasslands, making those 

wetlands prime environments for cattail. 

 Consolidation drainage appears to have more of an indirect effect on increased cattail 

coverage in wetlands through altered water-level fluctuations, rather than a direct effect.  

Consolidation drainage actually could keep cattail coverage low in wetlands that have not yet 

filled their topographic basin, because as a result of each climatic wetting phase water levels 

progressively increase (Chapter 2) to flood existing cattail stands.  However, that is only a 

temporary response, until a wetland basin is full and water levels stabilize.  Once water-levels 

stabilized, cattail coverage is likely to increase within wetlands where consolidation drainage has 

occurred.   

 My observations provide evidence that landscape modifications that have altered 

hydrologic processes within wetlands have the potential to alter natural vegetative cycles, 

resulting in increased coverage of cattail in monotypic stands rather than more diverse plant 

communities interspersed within wetlands.  This change can negatively impact invertebrate 

forage and waterbird populations that feed on aquatic invertebrates.  Restoration of more natural 

water-level fluctuations in response to wet–dry climate periods, perhaps through restoration of 

complexes of wetlands with vary hydroperiods, may restore vegetative cycles and transition 

monotypic stands of cattail back into vegetative communities that vary in wetland coverage 

according to hydrologic conditions. 
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CHAPTER 4.  ALTERED WETLAND HYDROLOGY SUPPORTS INCREASED 

PRESENCE OF FISH IN PRAIRIE POTHOLE WETLANDS ACROSS NORTH 

DAKOTA 

Abstract 

In prairie wetlands fish have been implicated in the degradation of habitat for aquatic 

invertebrates and in turn for waterbirds.  Historically, fish occurrence had been mostly low, 

approximately 10–20%, and intermittent in semipermanent and permanent wetlands within the 

Prairie Pothole Region due to their depth, chemical and hydrological dynamics, and isolation.  

However, landscape modifications such as consolidation drainage of wetlands have increased 

water levels, connectivity, and hydroperiods of remaining wetlands.  I evaluated how these 

changes have influenced the occurrence and abundance of fish in prairie wetlands of North 

Dakota and how fish have influenced wetland quality, as measured by the amount of submerged 

aquatic vegetation, turbidity, and the nature of aquatic invertebrate communities.  Fish were 

present in 57% of 138 semipermanent and permeant wetlands surveyed in 2011, an increase of 

14% compared to surveys conducted in 2004 and 2005.  Logistic regression analysis indicated a 

higher probability of fish occurrence in wetlands that had greater water depth (β� = 0.625 ±0.319 

SE) and greater wetland connectivity by means of more full topographic basins (β� = 0.020 

±0.009 SE).  Fish abundance was similarly related to water depth (β� = 0.231 ±0.082 SE) and 

more full topographic basins (β� = 0.007 ±0.002 SE), indicated by mixed-effect regression 

analysis.  Fathead minnow abundance was positively correlated with turbidity (β� = 2.735 ±0.709 

SE) and negatively correlated with abundance of submerged aquatic vegetation (β� = -0.209 

±0.088 SE) and invertebrate biomass (β� = -0.097 ±0.041 SE) in multivariate multiple regression 

analysis.  These results indicate an indirect negative influence of consolidation drainage on 
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wetlands’ ability to support productive and diverse invertebrate communities and the waterbird 

populations that rely on them, through increased fish abundance and turbidity and decreased 

abundance of submerged vegetation. 

Introduction 

Distribution of fish in wetlands in the Prairie Pothole Region is influenced by isolation of 

wetland basins, water depth, and water chemistry all of which are dynamic as a result of 

fluctuations between wet and dry climate periods (LaBaugh et al. 1987; Kantrud et al. 1989; 

Peterka 1989; Euliss et al. 1999; Leibowitz and Vining 2003).  However, anthropogenic 

modifications to prairie landscapes have been linked to disruptions of water-level fluctuations 

and basin isolation (Euliss and Mushet 1996; Merkey 2006; Anteau 2012).  Specifically, 

consolidation drainage of wetlands in prairie landscapes has led to more-permanent, larger 

wetlands that contain more surface connections to other wetlands (McCauley et al. In Review; 

Chapter 2).  As a result, these modifications may contribute to an increase in the distribution and 

abundance of fish in wetlands (Zimmer et al. 2000; Anteau 2012). 

Fish populations in most semipermanent prairie wetlands historically have been 

intermittent, dependent upon how wet or dry wetlands are in response to climate fluctuations 

(Kantrud et al. 1989; Peterka 1989).  During wet periods, fish disperse through flooded 

connections among semipermanent and permanent wetlands (Kantrud et al. 1989).  Flooding of 

previously dried areas within these wetlands induces a pulse in invertebrate productivity 

providing abundant food that facilitates growth of local fish populations (Euliss et al. 1999; 

Hanson et al. 2005).  Higher water-levels provide areas of wetlands that are deep enough for 

over-winter survival or provide connections to other areas of winter refugia (Zimmer et al. 

2001a).  However, when water levels recede wetlands become isolated and fish are less likely to 
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survive as hypoxic conditions cause a winterkill or summerkill event (Kantrud et al. 1989; 

Peterka 1989).  

Changes in wetland hydrology have the potential to influence ecological communities in 

prairie wetlands because native communities are the result of a dynamic and surface isolated 

system.  Higher, more stable water regimes may shift species composition toward a community 

with species that are adapted to more stable environments.  Further, increased connectivity 

among basins would provide colonization corridors and deep-water refugia for fish that rarely 

colonized isolated basins (Herwig et al. 2010).  Together these conditions are more favorable for 

fish that were previously kept in check by hydrologic dynamics and geographic isolation of 

wetlands to become invasive and further threaten natural functions of prairie wetlands (Scheffer 

et al. 1993; Hanson et al. 2005; Herwig et al. 2010; Anteau et al. 2011). 

Compared to historical accounts, the prevalence of fish in prairie wetlands was 

apparently increased in 2004 and 2005, during a high-stable-water regime (Anteau and Afton 

2008; Anteau et al. 2011).  Increases in occurrence and abundance of fish can decrease 

abundance of invertebrates in wetlands thereby reducing forage quality and foraging efficiency 

for waterbirds (Swanson and Nelson 1970; Cox et al. 1998; Hanson et al. 2005; Anteau and 

Afton 2009).  High abundance of fish can impact density of macroinvertebrates (e.g., amphipods 

and cladocerans) in wetlands directly through predation and indirectly through increased 

turbidity, which decreases submerged vegetation habitat for invertebrates, both resulting in a 

change in wetland trophic structure (Scheffer et al. 1993; Hanson and Butler 1994; Zimmer et al. 

2000; Zimmer et al. 2001b; Anteau et al. 2011).  Abundance of fathead minnows (Pimephales 

promelas) are of particular interest regarding the quality of a wetland to support waterbirds in the 

region because they are tolerant of a wide range of environmental conditions, have a high rate of 
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reproduction, and are large enough to eat macroinvertebrates, yet have also been found to feed 

on detritus that may increase turbidity (Held and Peterka 1974; Gale and Buynak 1982; Hanson 

and Riggs 1995; Duffy 1998; Herwig and Zimmer 2007). 

Here I examined how landscape modifications that have been linked to higher water 

levels, altered water-level fluctuations, and increased wetland connectedness (McCauley et al. In 

Review; Chapter 2) have influenced occurrence and abundance of fish in semipermanent and 

permanent prairie wetlands of North Dakota.  I evaluated their influence on occurrence of fish in 

2011, with the expectation that fish had a higher probability of occurrence in wetlands within 

modified catchments where water depths were greater and wetlands were more connected based 

on evidence from previous studies (Herwig et al. 2010; Anteau et al. 2011; Maurer et al. 2014).  

Further, I evaluated whether these factors also increased abundance of fish.  Lastly, I evaluated 

whether abundance of fish had a negative influence on wetland quality measured by the amount 

of submerged aquatic vegetation, turbidity, and invertebrate densities and biomass (Hanson and 

Butler 1994; Anteau et al. 2011; Maurer et al. 2014).  Through these evaluations, I evaluate the 

direct effect landscape modifications have on increased fish occurrence and abundance in 

wetlands and indirect effect landscape modifications have on wetland community structure and 

productivity through altered wetland hydrology and increased fish abundance.  

Methods 

Study Area 

In 2011, I returned to 138 wetlands within the Prairie Pothole Region of North Dakota 

(Figure 4.1) that were previously randomly selected and surveyed once in 2004 or 2005 

(hereafter, 2004/05) by Anteau and Afton (2008).  These were lacustrine semipermanent and 

shallow-water permanent wetlands (Cowardin et al. 1979) that must have had an open-water area 
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larger than 120 m across to be included in the sample during 2004/05.  In 2004/05, if reselection 

in the field was necessary, the nearest suitable semipermanent wetland was surveyed.  In 2011, I 

returned to the 81 original wetlands and surveyed 57 additional randomly selected wetlands.  

Based on National Wetland Inventory classification (NWI; U.S. Fish and Wildlife Service 2003), 

93 of wetlands were semipermanent, 5 seasonal, and 40 permanent wetlands or shallow-water 

lakes.  The wetlands classified by NWI as seasonal were included because they were more 

characteristic of a semipermanent wetland at time of field assessment. 

Spring Wetland Surveys 

In April and May of 2011, I surveyed wetlands using techniques described in Anteau and 

Afton (2008) to collect data on fish abundance, invertebrate density, water quality, and wetland 

vegetation structure.  I collected data on randomly located transects extending from shoreline 

toward the center of the wetland.  I recorded data electronically and georeferenced all sampling 

locations at the time of collection with a geographic information system (GIS) data logger 

(Trimble GeoXT, Trimble Navigation, Sunnyvale, CA).   

Fish communities 

I used minnow traps and an experimental gill net in wetlands to determine relative 

abundance of fish (Anteau and Afton 2008).  I set five Gee-style minnow traps with 6.35-mm 

mesh at the emergent vegetation to open-water interface (or equivalent position from the 

shoreline if no emergent vegetation is present) at five transects.  I set the monofilament 

experimental gill net (21 × 2 m with seven 3-m panels ranging in mesh size from 1.9–7.6 cm) at 

one of the five transects, positioned perpendicular to the shoreline with the small mesh end of the 

net at the emergent vegetation to open-water interface (or equivalent position from the shoreline 

if no emergent vegetation was present).  Minnow traps and the gill net were deployed for 12–24 
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hours including an overnight period.  At the time of trap and gill net retrieval, I sorted and 

counted fish by species and by length category (<5, 5–10, 10–20, 20–40, >40 cm).  

 

 
Figure 4.1.  North Dakota study area showing townships where wetlands were surveyed during 
early spring of 2004, 2005, and 2011.  Counties are outlined within the shaded region 
representing the Prairie Pothole Region. 

 
I classified fish captures into one of three categories: fathead minnows, other small fish 

species typically <10 cm (e.g., other minnows [Cyprinidae], darters [Anhingidae], and 

sticklebacks [Gasterosteidae]), and large fish species typically >10 cm (e.g. northern pike [Esox 

lucius], walleye [Sander vitreus], yellow perch [Perca flavescens], sunfishes [Lepomis spp.], and 

bullhead and catfish [Ictaluridae]).  I calculated catch per unit effort (relative abundance) for 

each gear type by dividing the number of captures of each class by the hours the gear was in the 

water.  For each class, I summed the quotients of the two gear types.  I also calculated catch per 

unit effort for all three fish classes combined. 
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Invertebrate densities and biomass 

I surveyed invertebrates in open water using a D-shaped sweep net (1,200 µm mesh, 

0.072 m2 opening, WARD’S Natural Science, Rochester, NY) at the four of five transects used 

for minnow traps; I excluded the one used for the gill net.  Sampling stations at each transect 

were located at 10 and 60 m from the shoreline or emergent vegetation to open-water interface.  

Survey locations were adjusted along transects to ensure the station depth was between 0.5 and 3 

m (see Anteau and Afton 2008).  I recorded depth at each sampling station to the nearest 0.1 m.  

At each station, a sweep-net sample consisted of a sweep across the bottom for a distance equal 

to the water depth, and a sweep up through the water column.  I calculated the volume of water 

surveyed (VS; m3) with a sweep net using the following equation (Anteau and Afton 2008):  

VS = 2(∑ Di ) x SN, 

where Di = depth at each sampling location and SN = area of the sweep-net opening (0.072 m2).  

Vegetation or debris that was brought up in the sweep net was included in the sample, unless 

>50% of the object was hanging outside the net.  I composited the samples into 10- and 60-m 

samples for each wetland, and samples were chilled with ice then frozen within 8 hours of 

collection.  In the laboratory, I allowed the samples to thaw, and then I sorted and counted 

invertebrates by taxonomic level (Table 4.1).  I estimated dry biomass of aquatic invertebrates (g 

m-3) for each wetland using counts multiplied by an average mass for each taxon, a mass that was 

calculated from a long term wetland ecological study at Cottonwood Lake Study Area, North 

Dakota, using data collected in April–May during 1992–2012 (David Mushet, Northern Prairie 

Wildlife Research Center, U.S. Geological Survey, personal communication).  
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Wetland habitat 

After a sweep-net sample had been taken at a station, I surveyed the abundance of 

submerged aquatic vegetation along a perpendicular sub-transect originating at the sampling 

station.  I recorded vegetation presence/absence of 10 rake grabs (36-tine, 91.4 cm wide Lake 

Rake, Ben Meadows Co., Janesville, WI) spaced approximately 1 m apart on each sub-transect 

(Nyman and Chabreck 1996; Anteau and Afton 2008).  One rake grab consisted of the rake being 

gently placed on the wetland bottom and then pulled straight up to the surface.  The rake was 

cleaned of vegetation after each grab. 

At four regularly spaced locations that approximated quarters of each wetland I measured 

turbidity (± 2 nephelometric turbidity units [NTU]), electrical conductivity (± 1µS), and water 

temperature (± 1ºC). These measurements were taken prior to any disturbance by other sampling 

methods. 

Water depth 

To estimate change in depth between surveys of 2004/05 (Anteau and Afton 2008) and 

2011, I measured water depth (± 0.1 m) at 10 locations estimated to be 10 m into open water 

from 2004/05 the shoreline or emergent vegetation to open-water interface.  When waves were 

present, I recorded the average depth between wave crests and troughs.  Prior to field work, I 

delineated the shoreline or emergent vegetation to open-water interface of each wetland using 

imagery (National Agricultural Imagery Program, U.S. Department of Agriculture; hereafter 

NAIP) acquired in the summer (July) prior to each spring survey by Anteau and Afton (2008).  I 

used the imagery from the previous year because it better represents the location of the emergent 

vegetation to open-water interface that Anteau and Afton (2008) used to locate their sampling 

locations.  I digitized the interface by using GIS software at a scale of 1:5,000.  I offset (i.e. 
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buffered) the digitized open-water interface by 10 m in the direction of the wetland center to 

approximate locations of 2004/05 sampling.  I derived my 10 random points from the 10-m 

buffer, but I constrained point locations so there is a minimum distance of 40 m between points.  

I loaded the random points onto the Trimble GeoXT to navigate to sampling locations.  Survey 

locations found within the emergent vegetation ring were recorded as such, because different 

dynamics of sedimentation and accumulation of organics were expected. 

 

Table 4.1.  Taxonomic names and rank to which aquatic invertebrates were sorted, counted, and 
biomass estimated.  Taxonomic information retrieved 28 July 2014, from the Integrated 
Taxonomic Information System on-line database, http://www.itis.gov/. 

Taxon Taxonomic Rank  Taxon Taxonomic Rank 

Anisoptera suborder  Gastropoda class 

Anostraca order  Gyrinidae family 

Bivalvia class  Haliplidae family 

Caenis genus  Hirundinea subclass 

Callibaetis genus  Hyalella genus 

Ceratopogonidae family  Hydrophilidae family 

Chaoboridae family  Laevicaudata suborder 

Chironomidae family  Notonectidae family 

Cladocera order  Ostracoda class 

Collembola order  Pleidae family 

Copepoda subclass  Prostigmata suborder 

Corixidae family  Stratiomyidae family 

Culicidae family  Tipulidae family 

Dytiscidae family  Trichoptera order 

Gammarus genus  Zygoptera suborder 
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Spatial Data Preparation 

Water surface area 

 I used water surface area delineated for each surveyed wetland by McCauley et al. (In 

Review) using photointerpretation of NAIP aerial imagery from 2010, to approximate the 

wetland water surface area during spring 2011.  Photointerpretation was performed while images 

were viewed as panchromatic instead of true-color, because they were done as part of a larger 

study that involved panchromatic imagery (see McCauley et al. In Review).  Where the waterline 

was obscured by emergent vegetation, the waterline was approximated to be halfway between 

the emergent-vegetation to open-water interface and clearly identifiable upland. 

Catchments 

I used wetland catchments as an index of watershed derived wetland complexes defined 

as the portion of the landscape in which surface water flows into a focal wetland, and included 

more-intermittent wetlands and their catchments (McCauley et al. In Review).  Catchments were 

derived for each of the surveyed wetlands using high-resolution digital elevation model (DEM; 

source data: 3 m pixel lidar; Data available from the U.S. Geological Survey or 5 m pixel 

interferometric synthetic aperture radar from Intermap Technologies, Inc., Englewood, 

Colorado) and surface hydrology modeling tools by McCauley and Anteau (2014).  Some 

catchments (46%) that were large or highly irregular in shape were truncated to a 2.5 km 

maximum radius from the wetland basin for logistical reasons associated with assembling 

landscape variables, such as amount of wetland area drained.  The 2.5-km radius encompassed 

>90% of the total catchment area for 68% of catchments.  Landscape conditions within these 2.5-

km truncated catchments should represent the condition of the full catchment, and the conditions 

nearest the wetland basin likely influence the basin most.  Therefore, I assumed the 2.5-km-
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truncated catchment provided a reasonable area to evaluate impacts of land use in our system and 

are an improvement over the simply buffering around a wetland a set distance, a common 

practice (McCauley and Anteau 2014). 

Catchment drainage 

I used an index that estimated the percent catchment area that was drained wetland during 

2003–2010 using multiple data sources, including: aerial photographs, DEM, NWI, and spatially 

explicit soil data (McCauley et al. In Review).  Wetlands were identified as drained if they were 

present in historical photographs (dating back to 1937) but not present in current photographs, or 

if the wetlands were identified as part of a drainage network.  Significant drainage occurred prior 

to 2003 in our study area; however, there was negligible evidence of additional drainage after 

2003.  

Basin area 

I defined a wetland basin as the topographic depression that collects surface water that 

which is isolated from basins of other wetlands of an equal or more permanent hydroperiod.  

Thus the basin area is the maximum water surface area of a wetland without water spilling and 

flowing out of the basin.  I used the high-resolution DEMs (3 m pixel lidar or 5 m pixel IfSAR) 

to find the spill point of the basin and then delineated the area at that spill point elevation within 

the basin.  Because I predicted that wetlands in basins that were near full or that were full would 

more likely have or be connected to deep water refugia, I calculated the proportion of the basin 

that the focal wetland filled in summer 2010 to approximate the condition in spring 2011. 

Statistical Analyses 

I evaluated the potential effect of water level and water-level dynamics on occurrence of 

fish in wetlands by using mixed effects logistic regression analyses (Package lme4 for R 
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Statistical Computing Environment; R Development Core Team 2010; Bates et al. 2011).  I 

separately analyzed presence/absence of fish of any species and specifically for fathead 

minnows.  Specific effects I evaluated were maximum water depth observed in 2011, drainage 

within the catchment, and basin percent full.  There was only weak evidence of correlation 

among independent variables (|r| < 0.28).  I included township-cluster as a random effect. 

 I evaluated the same effects of water level and water-level dynamics on abundance of fish 

found in 2011 using mixed effects regression analyses (Package lme4 for R Statistical 

Computing Environment; R Development Core Team 2010; Bates et al. 2011).  I used catch per 

unit effort (natural logarithm +1) as a relative abundance response index in separate analyses of 

fish of all species and of fathead minnows.  In an a priori model I evaluated the same 

independent variables as in the occurrence model, including: maximum water depth observed in 

2011, drainage within the catchment, and basin percent full.  I included township cluster as a 

random effect. 

 I used multivariate multiple regression analysis to evaluate the effect fish might have on 

wetland quality (R Statistical Computing Environment;  R Development Core Team 2010).  I 

evaluated the effect of fathead minnows separate from that of other fish species by using an 

independent variable for each group.  I also included maximum depth and water surface area as 

additional independent variables to control for variation in size among wetlands.  Dependent 

variables used to index wetland quality related to habitat for waterbirds included: turbidity, 

abundance of submerged vegetation, densities of amphipods and cladocerans, and total aquatic 

invertebrate biomass. 

I compared each a priori model to an intercept only model to evaluate model goodness-

of-fit.  In each analysis, I interpreted importance and size of independent effects within models 
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using 95% confidence intervals.  I considered effects with confidence intervals that did not 

overlap zero important.  

Results 

In 2011, fathead minnows, small fish, large fish and fish of any species were present in 

45%, 38%, 17%, and 57% of 138 wetlands surveyed, respectively.  This was an increase of 18%, 

16%, 5%, and 14%, respectively, over that observed in 81 wetlands during 2004/05 (Anteau and 

Afton 2008; Anteau et al. 2011).  Relative abundance of fathead minnows and other small fish 

increased in wetlands from 2004/05 to 2011, but we found only weak evidence of an increase in 

abundance of large fish for the same time period (Figure 4.2).  Maximum wetland depth in 2011 

ranged 0.2 m to >3.0 m (mean = 2.0 m, SD = 0.7).  Wetland drainage within catchments of focal 

wetlands ranged from 0–13% (mean = 2.2%, SD = 2.6).  On average in 2011, wetland 

topographic basins were 64% full (SD = 27; range = 1% to >100%). 

Models used to explain occurrence of fish and specifically fathead minnows in 138 

wetlands during 2011 both fit better than a null model (χ2 = 13.09, df = 3, P = 0.004; χ2 = 15.80, 

df = 3, P = 0.001; respectively).  Probability of fish occurrence was positively correlated with 

greater wetland depth and water levels nearer the wetland basin spill elevation (Table 4.2).  

Probability of fathead minnow occurrence was positively correlated with greater percent 

catchment area that was drained wetland and water levels nearer the wetland basin spill elevation 

(Table 4.3). 

Mixed effects regression models used to explain abundance of fish and specifically 

fathead minnows in 138 wetlands during 2011 both fit better than an intercept only model (χ2 = 

18.39, df = 3, P < 0.001; χ2 = 11.76, df = 3, P = 0.008; respectively).  These models explained 

52% and 20% of the variability in abundance of fish and specifically fathead minnows in my 
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observations among wetlands.  Township within which wetlands were surveyed accounted for 

24% and 6% percent of the variation in fish and specifically fathead minnow abundance, 

respectively.  Fish abundance was positively correlated with greater wetland depth and water 

levels nearer the wetland basin spill elevation (Table 4.4).  Abundance of fathead minnows was 

positively correlated with water levels nearer the wetland basin spill elevation (Table 4.5). 

 The multivariate multiple regression model used to evaluate the effect of fathead 

minnows and other fish on wetland quality was better fitted than was an intercept only model 

(Pillai = 0.640, F20, 528 = 5.031, P < 0.001).  Abundance of fathead minnows was correlated with 

increased turbidity and reduced abundance of submerged vegetation and invertebrate biomass 

(Tables 4.6).  There was insufficient evidence to support any correlation of other fish species to 

these same parameters of wetland quality.  I did not find sufficient evidence for fish abundance 

directly impacting density of amphipods or cladocerans.  Maximum depth of a wetland was an 

important factor to control for turbidity, cladoceran density, and invertebrate biomass; and, water 

surface area an important factor to control for turbidity, submerged vegetation, and invertebrate 

biomass.   
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Figure 4.2.  Back-transformed geometric least squares means of catch per unit effort (±95% CI) 
of fish groups during spring 2004 or 2005 (circles) and 2011 (triangles) within semipermanent 
and permanent prairie pothole wetlands (n = 81) in North Dakota.  Fish groups are fathead 
minnows, small fish as other small species typically < 10 cm, and large fish as species typically 
> 10 cm in length.  
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Table 4.2.  Fixed effect parameter estimates from an a priori mixed effects binomial model used 
to examine the effect of wetland hydrology and connectivity on probability of occurrence of fish 
within more-permanent wetlands during a climatic wet period during spring 2011 in North 
Dakota.  Included are: estimated coefficients (β�), standard errors (SE), and lower (LCL) and 
upper (UCL) 95% confidence limits. 

Fixed Effect β� SE LCL UCL 

Intercept -1.351 0.835 -2.987 0.285 

Max Depth 0.625 0.319 -0.001 1.252 

Drainage 0.154 0.112 -0.066 0.374 

Basin Full 0.020 0.009 0.003 0.036 

 
 
 
 
 
Table 4.3.  Fixed effect parameter estimates from an a priori mixed effects binomial model used 
to examine the effect of wetland hydrology and connectivity on probability of occurrence of 
fathead minnows within more-permanent wetlands during a climatic wet period during spring 
2011 in North Dakota.  Included are: estimated coefficients (β�), standard errors (SE), and lower 
(LCL) and upper (UCL) 95% confidence limits. 

Fixed Effect β� SE LCL UCL 

Intercept -1.905 0.741 -3.358 -0.451 

Max Depth 0.031 0.259 -0.477 0.539 

Drainage 0.217 0.085 0.051 0.383 

Basin Full 0.018 0.007 0.004 0.032 
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Table 4.4.  Fixed effect parameter estimates from an a priori mixed effects regression model 
used to examine the effect of wetland hydrology and connectivity on relative abundance of fish 
(catch per unit effort) within more-permanent wetlands during a climatic wet period during 
spring 2011 in North Dakota.  Included are: estimated coefficients (β�), standard errors (SE), and 
lower (LCL) and upper (UCL) 95% confidence limits.  A colon indicates an interaction predictor 
term. 

Fixed Effect β� SE LCL UCL 

Intercept -0.454 0.231 -0.908 -0.001 

Max Depth 0.231 0.082 0.071 0.392 

Drainage 0.031 0.025 -0.018 0.080 

Basin Full 0.007 0.002 0.003 0.011 

 
 
 
 
 
 
Table 4.5.  Fixed effect parameter estimates from an a priori mixed effects regression model 
used to examine the effect of wetland hydrology and connectivity on relative abundance of 
fathead minnows (catch per unit effort) within more-permanent wetlands during a climatic wet 
period during spring 2011 in North Dakota.  Included are: estimated coefficients (β�), standard 
errors (SE), and lower (LCL) and upper (UCL) 95% confidence limits. 

Fixed Effect β� SE LCL UCL 

Intercept -0.340 0.209 -0.749 0.069 

Max Depth 0.122 0.075 -0.025 0.269 

Drainage 0.017 0.022 -0.025 0.060 

Basin Full 0.006 0.002 0.002 0.010 
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Table 4.6.  Parameter estimates from an a priori multivariate multiple regression model used to 
examine the effect of fathead minnows and fish of other species on quality of 138 more-
permanent wetlands in North Dakota during spring 2011.  Wetland quality was defined as low 
turbidity, greater abundance of submerged vegetation, greater densities of amphipod or 
cladocerans, and greater aquatic invertebrate biomass.  Maximum depth and water surface area 
were used to control for wetland size.  Included are: estimated coefficients (β�), standard errors 
(SE), and lower (LCL) and upper (UCL) 95% confidence limits. 

Response Predictor β� SE LCL UCL 

Turbidity Intercept 21.363 7.090 7.467 35.260 
 Fathead Minnow 2.735 0.709 1.347 4.124 

 Other Fish 0.079 1.925 -3.694 3.851 

 Max Depth (m) -9.797 3.331 -16.325 -3.269 

 Surface Area (ln ha) 4.355 1.651 1.119 7.591 

Submerged 
Vegetation 

Intercept 8.542 0.881 6.816 10.268 

Fathead Minnow -0.209 0.088 -0.381 -0.036 

 Other Fish 0.083 0.239 -0.386 0.551 

 Max Depth -0.777 0.414 -1.587 0.034 

 Surface Area  -0.952 0.205 -1.354 -0.550 

Amphipods Intercept 2.036 0.518 1.020 3.052 

 Fathead Minnow 0.005 0.052 -0.096 0.107 

 Other Fish 0.025 0.141 -0.251 0.301 

 Max Depth 0.329 0.244 -0.148 0.806 

 Surface Area -0.098 0.121 -0.334 0.139 

Cladocerans Intercept 3.137 0.597 1.967 4.308 

 Fathead Minnow 0.010 0.060 -0.107 0.127 

 Other Fish -0.242 0.162 -0.560 0.075 

 Max Depth -0.911 0.281 -1.461 -0.361 

 Surface Area 0.217 0.139 -0.056 0.490 

Invertebrate 
Biomass 

Intercept 1.846 0.412 1.038 2.654 

Fathead Minnow -0.097 0.041 -0.177 -0.016 

 Other Fish 0.042 0.112 -0.178 0.261 

 Max Depth -0.461 0.194 -0.840 -0.081 

 Surface Area -0.417 0.096 -0.605 -0.229 
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Discussion 

 My results provide support for the hypothesis that consolidation drainage has caused an 

increase in dispersal of fish and creation of more deep-water refugia where fish are in higher 

abundance and can serve as source populations for further dispersal during period of wet climate 

conditions (Zimmer et al. 2001a; Anteau 2012).  Thus, increased presence and abundance of fish 

can be associated to consolidation drainage by the evidence that suggests progressive increases 

in water level, less water-level fluctuation in response to climate variability, and ultimately more 

connectivity amongst wetlands to larger watersheds as a result of drainage within the catchments 

of wetlands (McCauley et al. In Review; Chapter 2).  These results are consistent with those of 

others that have explained presence of fish as a function of wetland depth and connectedness, 

and climate variability (Tonn and Magnuson 1982; Rahel 1984; Magnuson et al. 1998; Hanson et 

al. 2005; Herwig et al. 2010).  Moreover, the impact of consolidation drainage on wetland 

hydrology combined with evidence herein of sustained fish populations suggests that fish 

populations are likely to be more-permanent in more wetlands within modified landscapes. 

The overall increase in wetland depth that I observed provided more deep-water habitat 

that was more suitable for fish to survive and allowed fish to colonize into more wetlands 

through connections created by higher water-levels.  I observed fish in more wetlands and in 

higher abundances than had been observed in the past (Peterka 1989; Anteau and Afton 2008; 

Anteau et al. 2011).  Further, these increases were correlated with wetlands that filled more of 

their topographic basin.  While in the short term, some of the observed increases in fish could be 

due to prolonged wet climate conditions; over the long-term it appears that consolidation 

drainage has potential to permanently increased fish occurrence and abundance.  If the climate 

were to shift towards more severe dry periods perhaps these trends may be reversed; however, it 
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is unclear what level of drought is required to reverse the trends in increasing water level due to 

consolidation drainage (McCauley et al. In Review; Chapter 2).  Long-term fish community 

trends that include a more-severe dry period as part of a longer period climate cycle will help to 

evaluate the permanence of the effects from consolidation drainage. 

Numerous studies have linked presence of fish in wetlands to increased turbidity, reduced 

submerged vegetation, and reduced abundance of invertebrates (e.g., Scheffer et al. 1993; 

Hanson and Butler 1994; Zimmer et al. 2001a; Anteau et al. 2011; Maurer et al. 2014).  It is 

perhaps safe to assume that fish have a direct negative affect on invertebrate abundance when 

they forage upon them (e.g., Hanson and Riggs 1995).  However, I did not observe a direct 

decrease in amphipod or cladoceran abundance linked to abundance of fish, perhaps because 

during an expansion of fish wetlands with good invertebrate abundance also result in great 

abundances of fish.  My observations were consistent with an indirect mechanisms where greater 

fathead minnow abundance results in an increase in turbidity and a decrease in submerged 

vegetation which in turn results in a decrease in overall invertebrate biomass including 

amphipods, because there was evidence that amphipod abundance was positively related to 

submerged vegetation and negatively related to turbidity (Anteau et al. 2011; Chapter 5).  Maurer 

et al. (2014) also found support for this indirect relationship within wetlands in Iowa.  While 

evidence from studies that provide snapshots of many wetlands suggests fish have an indirect 

impact on aquatic invertebrate communities through increased turbidity and decreased 

abundance of submerged vegetation and overall invertebrate biomass, long-term studies of fewer 

wetlands or lakes have provided an opportunity to observe stages of changes in trophic structure 

as a result of fish introduction and eliminations (Carpenter et al. 1985; Hanson and Butler 1994).  

Nonetheless, increased permanence and greater abundance of fish, specifically fathead minnows, 
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in prairie pothole wetlands can be associated with negatively impacting the quality of a wetland 

to support waterbird populations that rely on macroinvertebrate prey. 

My results also indicated that small wetlands and shallow wetlands had greater 

invertebrate biomass than large wetland and deep wetlands.  Increased water level and 

hydroperiod resulting from consolidation drainage are likely to continue to effect wetland 

communities across the region, unless management actions are taken to restore complexes of 

wetlands having various hydroperiods and more surface isolation.  Increased fish abundance and 

turbidity, which are linked to consolidation drainage, can serve as a negative indicator of wetland 

quality to support waterbirds.  Accordingly, evaluation of distributions of fish and turbidity 

within wetlands across landscapes could provide a regional-scale assessment of wetland quality.  

If the availability of quality wetlands that can support waterbirds continues to decrease, the 

effects are likely to become more noticeable in waterbird populations that rely on invertebrates 

within these wetlands to obtain nutrients required for migration and breeding (Afton and 

Anderson 2001; Anteau and Afton 2004). 
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CHAPTER 5.  AMPHIPOD DENSITIES REMAIN LOW FOLLOWING WATER-

LEVEL FLUCTUATION IN PRAIRIE POTHOLE WETLANDS 

Abstract 

Variability in amphipod abundance and productivity within wetlands of the Prairie 

Pothole Region is thought to have been historically driven by inter-annual fluctuations of water 

levels that facilitated nutrient cycling.  However, landscape modifications have altered wetland 

hydrologic regimes and responses to climate variability, namely water-level fluctuation.  

Consequent changes in amphipod abundance and productivity may impact waterbird 

populations, because amphipods are important forage for migrating and breeding waterbirds in 

the region.  In 2004–2005, amphipods densities were low across the Prairie Pothole Region 

following a period of high and stable water levels, perhaps due to lack of water-level fluctuation.  

I tested whether subsequent water-level fluctuations in the prairie pothole wetlands in North 

Dakota influenced a change in density of Gammarus lacustris and Hyalella azteca (hereafter 

Gammarus and Hyalella, respectively) from prior to a dry period in 2006–2008 to after wetlands 

re-flooded in 2010–2011.  Wetland water surface area decreased 22% (±2.0S E) during the dry 

period, and then wetlands re-flooded to 7% (±1.1 SE) greater than initial area during the wet 

period.  However, Gammarus and Hyalella densities remained generally low in North Dakota; 

specifically, Gammarus densities did not change and Hyalella decreased slightly.  Further, 

density of both species decreased where extensive historical wetland drainage occurred within 

catchments of surveyed wetlands; however, both species increased where wetlands filled more of 

their topographic basins.  My findings suggest that previously reported low region-wide densities 

of amphipods were not a result of a sustained wet period; rather they may be the result of 

landscape modifications that alter wetland hydrology. 
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Introduction 

Amphipods are a common crustacean in semipermanent and permanent wetlands of the 

Prairie Pothole Region, and Gammarus lacustris and Hyalella azteca (hereafter Gammarus and 

Hyalella, respectively) are the two most abundant species within wetlands of the region (Kantrud 

et al. 1989; Anteau and Afton 2008).  The density of amphipods can serve as an indicator of 

wetland and water quality because amphipods are sensitive to disturbances in uplands, invasive 

species, and contaminants (Grue et al. 1988; Tome et al. 1995; Duan et al. 2000; Anteau and 

Afton 2008; Hentges and Stewart 2010; Anteau et al. 2011).  Rich in lipids and proteins, 

amphipods are an important forage for locally breeding waterbirds and for those bound for other 

breeding areas that must acquire and maintain nutrient reserves while migrating through the 

region (Batt et al. 1989; Swanson and Duebbert 1989; Anteau and Afton 2006, 2011).  

Amphipod densities in the spring are an indicator of forage availability for spring migrating and 

breeding waterbirds and indicate previous-year productivity and overwinter survival of 

amphipods (Lindeman and Clark 1999; Anteau and Afton 2009a).  Therefore, the quality of a 

wetland to support waterbirds can be assessed in the spring using the density of adult amphipods 

that survived over winter (Anteau and Afton 2008). 

Historically, water levels in wetlands fluctuated in response to climate fluctuations 

between wet and dry periods (Kantrud et al. 1989; Euliss et al. 1999; Euliss et al. 2004; Anteau 

2012; McCauley et al. In Review).  It is thought that hydrologic responses of wetlands to these 

wet–dry periods are one of the primary drivers of productivity and density of aquatic 

invertebrates in the prairie pothole wetlands (Euliss et al. 1999).  High and stable water levels 

inhibit nutrient cycling, but the drying of wetlands or portions of wetlands allows for nutrient 

cycling and a subsequent pulse of productivity after wet conditions return (Euliss et al. 1999).  
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Similarly, wetlands likely receive increases in nutrients when uplands are inundated by extreme 

or consecutive wet years.  Accordingly, temporal position within wet–dry periods likely affects 

abundance of aquatic invertebrates and ultimately populations of waterbirds that are dependent 

on the nutritional resources provided by prairie pothole wetlands.  However, landscape 

modifications can alter water-level responses to climate variability (Post van der Burg et al. In 

Prep.; McCauley et al. In Review; Chapter 2), potentially disrupting linkages among wet–dry 

periods, wetland productivity, and waterbird populations (Batt et al. 1989).  

Abundance and quality of wetlands in North Dakota has declined due to landscape 

modifications, primarily agriculture (Dahl 1990; Anteau and Afton 2008; Bartzen et al. 2010).  A 

common agricultural practice aimed at increasing tillable acreage is to consolidate water from 

smaller, less-permanent wetlands into larger, more-permanent wetlands (Krapu et al. 2004; 

Anteau 2012).  This practice alters hydrology of wetlands that receive consolidated water by 

increasing their size and changing the way wetlands respond to climate fluctuations (Anteau 

2012; Post van der Burg et al. In Prep.; McCauley et al. In Review; Chapter 2).  Wetlands with 

water levels that are near the topographic basin spill point have attenuated water-level fluctuation 

which can impact pulses of productivity once experienced in these wetlands. 

Existing drainage networks and high water levels increase surface water connections 

among remaining wetlands that can serve as corridors for fish to distribute into new wetlands and 

find overwinter refugia.  A high abundance of fish can both directly (through predation) and 

indirectly (e.g., through increased turbidity or reduction of submerged aquatic vegetation) impact 

density of invertebrates in wetlands (Hanson and Butler 1994; Zimmer et al. 2000; Hanson et al. 

2005; Anteau and Afton 2008; Anteau et al. 2011).  Tiger salamanders (Ambystoma tigrinum) in 

high abundance can also decrease densities of amphipods through predation (Olenick and Glee 
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1981; Kantrud et al. 1989; Macneil et al. 1999; Benoy 2005); although, native populations of 

tiger salamander also have been negatively impacted by upland modification (Balas et al. 2012; 

Mushet et al. 2014).  

Conversion of uplands surrounding wetlands from grasslands to cropland may indirectly 

decrease quality of wetlands by increasing sediment delivered by runoff water and wind thereby 

increasing turbidity of the water (Gleason and Euliss 1998).  Turbidity and high sediment loads 

reduce the abundance of submerged aquatic vegetation and invertebrates in wetlands (Gleason 

and Euliss 1998; Anteau and Afton 2008; Anteau et al. 2011).  However, buffers of grassland 

between wetlands and tilled land can reduce the effect of sedimentation and negative impacts on 

invertebrate abundance (Castelle et al. 1994; Anteau et al. 2011).   

In 2004–2005, amphipod densities were low across the Prairie Pothole Region compared 

to historical records (Anteau and Afton 2008), perhaps due to landscape modifications (Anteau 

and Afton 2008; Anteau et al. 2011).  However, most of the region in the years prior to 2004 and 

2005 experienced a regime of relatively high and stable water levels since 1993; therefore, 

amphipod numbers could have been low due to a period of little inter-annual water-level 

variation during which nutrients limited productivity (Euliss et al. 1999; Euliss et al. 2004).  

Many parts of the Prairie Pothole Region in North Dakota experienced moderate to severe 

drought during 2006–2008 (NCDC 2014), making it possible for basins to have lower water 

levels and subsequent nutrient cycling (Euliss et al. 1999).  In spring 2009, wet conditions 

returned for most prairie wetlands in North Dakota.  Thus, if amphipod densities were low in 

2004–2005 due to the temporal position within wet–dry climate fluctuations, then I expected 

amphipod densities would increase after water levels increased in 2009.  However, if landscape  
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modifications disturbed water-level fluctuations or have had other influences upon amphipods, I 

expected densities to remain low.  

In this chapter, I tested if water-level dynamics effected the change in density of 

amphipods from prior to the dry period in 2006–2008 to after wetlands re-flooded.  I also 

evaluated the influence of landscape modifications, the presence of fish and salamanders on the 

change in amphipod density.  

Methods 

Study Area 

I returned to wetlands within the Prairie Pothole Region of North Dakota (Figure 5.1) that 

were previously randomly selected and surveyed once in 2004 or 2005 (hereafter, 2004/05) by 

Anteau and Afton (2008; n = 153).  These were lacustrine semipermanent and shallow-water 

permanent wetlands (Cowardin et al. 1979) that must have had an open-water area larger than 

120 m across to be surveyed in 2004/05.  In 2004/05, if reselection in the field was necessary, the 

nearest suitable semipermanent wetland was surveyed.  In each year 2010 and 2011, I returned to 

126 of the original 153 wetlands.  I did not survey the remaining wetlands because I could not 

gain permission to access private lands, or wetlands had been amalgamated with larger water 

bodies (e.g., Devils Lake).  Based on National Wetland Inventory classification (NWI; U.S. Fish 

and Wildlife Service 2003), 67% of our wetlands were semipermanent, 3% seasonal, and the rest 

being permanent wetlands or shallow-water lakes.  Those wetlands classified by NWI as 

seasonal were wetlands reselected in the field in 2004/05 that were more characteristic of 

semipermanent wetlands at time of field assessment. 
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Figure 5.1.  North Dakota study area showing townships where wetlands were surveyed during 
early spring of 2004, 2005, 2010 and 2011.  Shaded areas are three physiographic regions of the 
Prairie Pothole Region: Red River Valley (RRV), Northern Glaciated Plains (NGP), and 
Missouri Coteau (COT). 

 
Spring Wetland Surveys 

During April and May of 2010 and 2011, I surveyed wetlands using techniques described 

in Anteau and Afton (2008) to collect data on amphipod density, fish abundance, water quality, 

and wetland vegetation structure.  I collected data on randomly located transects extending from 

shoreline toward the center of the wetland.  I recorded data electronically and georeferenced all 

sampling locations at the time of collection with a geographic information system (GIS) data 

logger (Trimble GeoXT, Trimble Navigation, Sunnyvale, CA).   
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Amphipod densities 

I sampled amphipods in open water using a D-shaped sweep net (1,200 µm mesh, 0.072 

m2 opening, WARD’S Natural Science, Rochester, NY) at four amphipod-sampling transects 

(hereafter primary transects).  Sampling stations at each transect were located at 10 and 60 m 

from the shoreline or emergent vegetation to open-water interface.  Sample locations were 

adjusted along transects to ensure the station depth was between 0.5 and 3 m (see Anteau and 

Afton 2008).  I recorded depth at each sampling station to the nearest 0.1 m.  At each station, a 

sweet-net sample consisted of a sweep across the bottom for a distance equal to the water depth, 

and a sweep up through the water column.  I calculated the volume of water sampled (VS; m3) 

with a sweep net using the following equation (Anteau and Afton 2008):  

VS = 2(∑ Di ) x SN, 

where Di = depth at each sampling location and SN = area of the sweep-net opening (0.072 m2).  

Vegetation or debris that was brought up in the sweep net was included in the sample, unless 

>50% of the object was hanging outside the net.  I composited the samples into 10- and 60-m 

samples for each wetland, and samples were chilled with ice then frozen within 8 hours of 

collection.  In the laboratory, I allowed the samples to thaw, and then I sorted and counted 

amphipods by species.  

Wetland habitat 

After a sweep-net sample had been taken at a station, I surveyed the abundance of 

submerged aquatic vegetation along a perpendicular sub-transect originating at the sampling 

station.  I recorded vegetation presence/absence of 10 rake grabs (36-tine, 91.4 cm wide Lake 

Rake, Ben Meadows Co., Janesville, WI) spaced approximately 1 m apart on each sub-transect 

(Nyman and Chabreck 1996; Anteau and Afton 2008).  One rake grab consisted of the rake being 
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gently placed on the wetland bottom and then pulled straight up to the surface.  The rake was 

cleaned of vegetation after each grab. 

At four regularly spaced locations that approximated quarters of each wetland I measured 

turbidity (± 2 nephelometric turbidity units [NTU]), electrical conductivity (± 1µS), and water 

temperature (± 1ºC). These measurements were taken prior to any disturbance by other sampling 

methods. 

Fish and salamander communities 

I used minnow traps and an experimental gill net in wetlands to determine relative 

abundance of fish and salamanders (see Anteau and Afton 2008).  I set five Gee-style minnow 

traps with 6.35-mm mesh at the emergent vegetation to open-water interface (or equivalent 

position from the shoreline if no emergent vegetation is present) at five transects.  I set the 

monofilament experimental gill net (21 × 2 m with seven 3-m panels ranging in mesh size from 

1.9–7.6 cm) at a transect perpendicular to the shoreline with the small mesh end of the net at the 

emergent vegetation to open-water interface (or equivalent position from the shoreline if no 

emergent vegetation was present).  Minnow traps and the gill net were deployed for 12–24 hours 

including an overnight period.  At the time of trap and gill net retrieval, I sorted and counted fish 

by species and by length category (<5, 5–10, 10–20, 20–40, >40 cm) and measured body length 

of each salamander (±1 cm).   

I classified all captures into one of four categories: fathead minnows (Pimephales 

promelas), other small fish species typically <10 cm (e.g., other minnows [Cyprinidae], darters 

[Anhingidae], and sticklebacks [Gasterosteidae]), large fish species typically >10 cm (e.g. 

northern pike [Esox lucius], walleye [Sander vitreus], yellow perch [Perca flavescens], sunfishes 

[Lepomis spp.], and bullhead and catfish [Ictaluridae]), and salamanders.  I calculated catch per 
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unit effort (relative abundance) for each gear type by dividing the number of captures of each 

class by the hours the gear was in the water.  For each class, I summed the quotients of the two 

gear types.  

In 2011 I used the complete array of traps and a gill net in all wetlands surveyed.  

However, in 2010, I only used the five 6.35-mm mesh minnow traps in 75% of wetlands 

surveyed, and I did not adequately sample fish in the remaining 25% of wetlands.  Therefore, I 

relied on the complete data collected in 2011 for my analyses. 

Water depth 

To estimate change in depth among surveys of 2004/05 (Anteau and Afton 2008) and 

surveys of 2010 and 2011, I measured water depth (± 0.1 m) at 10 locations estimated to be 10 m 

into open water from either the shoreline or emergent vegetation to open-water interface for 

2004/05.  When waves were present, I recorded the average depth between wave crests and 

troughs.  Prior to field work, I delineated the shoreline or emergent vegetation to open-water 

interface of each wetland using imagery (National Agricultural Imagery Program, U.S. 

Department of Agriculture; hereafter NAIP) acquired in the summer (July) prior to each spring 

survey by Anteau and Afton (2008).  I used the imagery from the previous year because it better 

represents the location of the emergent vegetation to open-water interface that Anteau and Afton 

(2008) used to locate their sampling locations.  I digitized the interface by using GIS software at 

a scale of 1:5,000.  I offset (i.e. buffered) the digitized open-water interface by 10 m in the 

direction of the wetland center to approximate locations of 2004/05 sampling.  I derived my 10 

random points from the 10-m buffer, but I constrained point locations so there is a minimum 

distance of 40 m between points.  I loaded the random points onto the Trimble GeoXT to 

navigate to sampling locations.  Sample locations found within the emergent vegetation ring 
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were recorded as such, because different dynamics of sedimentation and accumulation of 

organics were expected.  Additionally, in 2011, I measured depth at four georeferenced locations 

where 10-m depth sampling occurred in 2010. 

Water surface area 

 I used water surface area delineated for each surveyed wetland by photointerpretation of 

National Agriculture Imagery Program (NAIP; U.S. Department of Agriculture) aerial imagery 

for 2003–2006 and 2009–2010 (McCauley et al. In Review).  Photointerpretation was performed 

while images were viewed as panchromatic instead of true-color, because they were done as part 

of a larger study that involved panchromatic imagery (see McCauley et al. In Review).  Where 

the waterline was obscured by emergent vegetation, the waterline was approximated to be 

halfway between the emergent-vegetation to open-water interface and clearly identifiable upland.  

NAIP imagery was not available for 2007 and 2008.  For those years I used wetland water 

surface area delineated once in either 2007 or 2008 using high-resolution digital elevation model 

(DEM; source data: 1 m pixel lidar; Data available from the U.S. Geological Survey) or ~1.25 m 

pixel interferometric synthetic aperture radar (IfSAR) orthorectified image (Intermap 

Technologies, Inc., Englewood, Colorado). 

Catchments 

I used wetland catchments as an index of watershed derived wetland complexes defined 

by McCauley et al. (In Review) that were delineated using high-resolution digital elevation 

models to detect the portion of the landscape where surface water flows into the focal wetland.  

These catchments included more-intermittent wetlands and their catchments (McCauley and 

Anteau 2014).  DEM source data included 1 m pixel lidar (data available from the U.S. 

Geological Survey) or ~1.25 m pixel interferometric synthetic aperture radar (IfSAR; Intermap 
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Technologies, Inc., Englewood, Colorado).  I used catchment size in my analysis, but I also used 

the extent of the catchment to define the area to assess land use effects upon wetlands (McCauley 

and Anteau 2014).  For logistical reasons associated with assembling landscape variables, such 

as amount of wetland area drained, I used catchments truncated to a 2.5 km maximum radius 

from the wetland basin for 46% of catchments because they were large or highly irregular in 

shape.  The 2.5-km radius encompassed >90% of the total catchment area for 68% of 

catchments.  Landscape conditions within these 2.5-km truncated catchments should represent 

the condition of the full catchment, and the conditions nearest the wetland basin likely influence 

the basin most.  Therefore, I assume the 2.5-km-truncated catchment provided a reasonable area 

to evaluate impacts of land use in this system and are an improvement over the simply buffering 

around a wetland a set distance, a common practice (McCauley and Anteau 2014).    

Catchment drainage 

I used estimates of the percent of the catchment area that was drained wetland during 

2003–2010 estimated from multiple data sources, including: aerial photographs, DEM, NWI, and 

spatially explicit soil data (see McCauley et al. In Review).  Wetlands were identified as drained 

if they were present in historical photographs (dating back to 1937) but not present in current 

photographs, or if the wetlands were identified as part of a drainage network.  Significant 

drainage occurred prior to 2003 in my study area; however, I found negligible evidence of 

additional drainage after 2003.  

Basin area 

Within a catchment, I defined the basin as the topographic depression that collects 

surface water and which is isolated from basins of other wetlands of an equal or more permanent 

hydroperiod.  I calculated the maximum potential water surface area of each basin using the 



105 
 

high-resolution DEMs (3 m pixel lidar or 5 m pixel IfSAR) to find the elevation at which water 

flows out of the basin (i.e., spill point) and then delineated the area at that spill point elevation 

within the basin.  Because I predicted that wetlands in basins that were near full or that were full 

would have less surface area dynamics, I calculated the proportion of the basin that the focal 

wetland filled at the start of each climate phase.  I used a logit transformation of the proportion-

basin-full variable × 0.1 for use in my analysis.   

Statistical Analyses 

I separately tested if Gammarus and Hyalella densities were different among years (i.e., 

position in climatic wet–dry fluctuations) and among regions using a two-way analysis of 

variance (ANOVA), including an interaction of the two factors.  I included region in this a priori 

test because Anteau and Afton (2008) found differences in density by physiographic region, and 

it is possible that amphipod productivity varied by region during the period of study.  Because 

amphipod densities followed a skewed-right distribution, I natural logarithm (+1)-transformed 

densities to meet assumptions of normality (Devore 2000).  I calculated geometric least-squares 

mean density of both species for each year by region using estimates from the two-way ANOVA 

interaction.  I plotted back-transformed geometric least-squares means and 95% confidence 

intervals.  I evaluated main effects from back-transformed estimated means and 95% confidence 

intervals of two-way ANOVAs for each species that did not include the interaction.   Means 

were interpreted as different if the confidence interval did not overall the mean of the other level. 

For each Gammarus and Hyalella, I calculated the change in density for year one as the 

difference between the 2004/05 and 2010 samples, and for year two as the difference between 

the 2004/05 and 2011 samples.  If a species was not found in any of the three sampling attempts, 

the wetland was removed from change in density analyses for that species.  For both species, the 
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distribution of change in density had long tails, so I natural logarithm (+1) -transformed the 

absolute values of the difference and then resigned the transformed value.  I analyzed data from 

two years of follow-up sampling (i.e., 2010 and 2011) to account for any lag in the productivity-

response to fluctuating water levels; however, I expected amphipod colonization and production 

to be high during 2009 which was the first year of the wet period.  

Prior to creating a general model for change in amphipod density, I evaluated changes in 

response to landscape modification and water-level fluctuation in year one and year two.  

Specifically, I calculated geometric least-squares mean changes in density separately for both 

species of amphipods in wetlands classified into categories delimited by one-third quantiles for 

1) percent catchment area that was drained wetland; 2) percent wetland area that was re-flooded 

after drawdown during the drying period; and 3) percent wetland area that was newly flooded 

beyond 2003–2005 water levels.  I interpreted an effect as present if the 95% confidence interval 

did not overlap zero.  I plotted back-transformed geometric least-squares means and 95% 

confidence intervals.   

To uncouple potential effects of landscape modifications from those of water-level 

fluctuations, I tested the effect of water-level fluctuation on changes in amphipod density for 

each species within a general mixed-effects regression analysis (Package lme4 in R Statistical 

Computing Environment; R Development Core Team 2010; Bates et al. 2011).  I evaluated 

water-level fluctuation effects in an a priori model by using natural logarithm (+1)-transformed 

area of wetland that was re-flooded after drawdown during the drying period and natural 

logarithm (+1)-transformed area of wetland that was newly flooded beyond 2003–2005 water 

levels.  I included additional fixed effect variables to control for maximum depth observed in 

2004/05, wetland connectedness by means of percent basin full and percent catchment area that 
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was drained wetland.  I found only weak evidence of collinearity among fixed effects (all |r| < 

0.32).  I included a repeated measures term for wetland by year and a random effect term for 

sampled township in the models to accommodate my sampling design.  

I conducted a second analysis on change in amphipod density that included only wetlands 

for which a complete set of fish abundance, salamander abundance, water-quality parameters and 

wetland vegetation variables were available in 2004/05 and 2011 samples.  I created five variable 

suites representing alternative hypotheses as to influences on change in amphipod density, 

including: 1) water-level dynamics with re-flood area, newly flooded area, and basin full; 2) 

water quality with electrical conductivity, turbidity, and submerged aquatic vegetation 

abundance; 3) fish change in occurrence and/or change in density for any species; 4) fathead 

minnow change in occurrence and/or change in density; and, 5) salamander change in occurrence 

and/or change in density.  Prior to creating multiple models I evaluated change in occurrence and 

change in density of fish, fathead minnows, and salamanders each separately in a full model that 

included all of the other suites.  Change in occurrence resulted in the better model for each fish, 

fathead minnows, and salamander; therefore change in occurrence was used in all subsequent 

models.  I created multiple models from all combination of variable suites, with the exception of 

change in occurrence of fish of any species and change in occurrence of fathead minnows being 

in the same model, and I included an intercept only model.  I found only weak evidence of 

collinearity among fixed effect variables that were included in the same model (all |r| < 0.40).  I 

used an information theoretical approach to select and interpret the single most parsimonious 

model using Akaike’s Information Criterion adjusted for small sample size (AICC; Burnham and 

Anderson 2002).   
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I determined fixed effect variables to be important if 95% confidence intervals did not 

include zero.  I reported goodness-of-fit for mixed effects models using marginal and conditional 

R2 (Nakagawa and Schielzeth 2013). 

Results 

 During 2010 and 2011, I resurveyed 126 wetlands that were initially surveyed in 2004/05 

(Anteau and Afton 2008).  At the time of initial sampling in 2004/05, wetlands averaged 63 ha of 

water surface area (range = 1–849 ha, median = 24 ha) and 1.3 m maximum water depth (range = 

0.5–3.0 m, median = 1.0 m).  During the dry period in 2006–2008, wetland water surface area 

had decreased 22% (±2.0 SE).  During the following wet period in 2009–2011, average wetland 

water surface area was 16% (±1.7 SE) greater than the previously exposed area that had been re-

flooded and 7% (±1.1 SE) greater than the initial area.  On average, focal wetland basins were 

61% (range = 1% to >100%, quartiles = 43%, 61%, 83%) and 65% (range = 1% to >100%, 

quartiles = 48%, 68%, 87%) full during 2010 and 2011, respectively.  During 2011, focal 

wetland basins were 3% more full than during 2004/05 (range = -43% to 46%, quartiles = -4%, 

2%, and 8%). 

Gammarus were present in 34%, 25%, and 31% of wetlands in 2004/05, 2010, and 2011, 

respectively.  The region-by-year interaction was not important for explaining Gammarus 

densities (F4, 369 = 0.19, P = 0.94; Figure 5.2).  Gammarus densities were different among 

regions (F2, 373 = 6.06, P < 0.01), as densities were greater in NGP than in COT and RRV (Table 

5.1).  However, Gammarus densities did not differ among years (F2, 373 = 0.85, P = 0.43; Table 

5.2). 
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Figure 5.2.  Back-transformed geometric least squares mean densities (m-3) and 95% lower 
(LCL) and upper (UCL) confidence limits of Gammarus lacustris observed in 2004 or 2005 
(circle), 2010 (square), and 2011 (triangle) in three physiographic regions of the Prairie Pothole 
Region of North Dakota: Red River Valley (RRV), Northern Glaciated Plains (NGP), and 
Missouri Coteau (COT).  
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Table 5.1.  Back-transformed geometric least squares mean densities (m-3) and 95% lower (LCL) 
and upper (UCL) confidence limits of Gammarus lacustris and Hyalella azteca observed during 
2004 or 2005, 2010, and 2011 in N number of wetlands within three physiographic regions of the 
Prairie Pothole Region of North Dakota.  

 Region N Mean LCL UCL 

Gammarus lacustris     

     Missouri Coteau 44 0.49 0.20 0.86 

     Northern Glaciated Plains 74 1.28 0.93 1.70 

     Red River Valley 8 0.20 -0.28 1.01 

Hyalella azteca     

     Missouri Coteau 44 6.90 4.64 10.06 

     Northern Glaciated Plains 74 7.32 5.42 9.79 

     Red River Valley 8 5.40 1.91 13.09 

 

 
Table 5.2.  Back-transformed geometric least squares mean densities (m-3) and 95% lower (LCL) 
and upper (UCL) confidence limits of Gammarus lacustris and Hyalella azteca observed in 126 
wetlands within the Prairie Pothole Region of North Dakota. 

Sampling Year Mean LCL UCL 

Gammarus lacustris    

     2004 or 2005 1.10 0.67 1.63 

     2010 0.70 0.36 1.13 

     2011 0.89 0.51 1.37 

Hyalella azteca    

     2004 or 2005 9.76 6.62 14.18 

     2010 4.91 3.19 7.34 

     2011 7.17 4.79 10.53 
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Hyalella were present in 70%, 66%, and 79% of wetlands in 2004/05, 2010, and 2011, 

respectively.  The region-by-year interaction was not important for explaining Hyalella densities 

(F4, 369 = 0.52, P = 0.72; Figure 5.3).  However, Hyalella densities did differ among years (F2, 373 

= 2.94, P = 0.05), as densities were greater in 2004/05 than in 2010 and densities in 2011 were 

marginally greater than 2010 (Table 5.2).  Although, Hyalella densities did not differ among 

regions (F2, 373 = 0.20, P = 0.82; Table 5.1).  

Overall changes in density of Gammarus and Hyalella in 2010 and 2011 compared to 

2004/05 were relatively small; Gammarus (mean = -0.60 m-3, 95% CI = -1.98 to 0.17 m-3; mean 

= -0.28 m-3, 95% CI = -1.40 to 0.45 m-3; in 2010 and 2011, respectively) and Hyalella (mean = -

1.52 m-3, 95% CI = -3.83 to -0.32 m-3; mean = -0.97 m-3, 95% CI = -2.78 to -0.03 m-3; in 2010 

and 2011, respectively).  However, there were large changes within some individual wetlands 

(Figure 5.4).   Examination of landscape modification and water-level fluctuation effects 

revealed decreases in density of both Gammarus and Hyalella occurred in wetlands where a 

higher percent of the catchment area was drained wetland, initially where a small percent of the 

wetland was re-flooded after drawdown during the dry period, and for Hyalella only, where 

moderate expansion of the wetland occurred in 2010 (Figure 5.5). 

Gammarus and Hyalella occurred in 50% and 92% wetlands, respectively, at least once 

during sampling in 2004/05, 2010, or 2011.  Percent basin full was positively correlated with an 

increase in Gammarus density, and there was not sufficient evidence support percent wetland 

area re-flooded and newly flooded, maximum depth, and wetland drainage within the catchment 

as important to explain change in Gammarus density (Table 5.3).  The mixed effects model used 

to explain change in density for Gammarus had a marginal R2 of 10% and a conditional R2 of 

79%.  Increase in Hyalella density was positively correlated with percent basin full and 
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negatively correlated with maximum depth, and there was not sufficient evidence support 

percent wetland area re-flooded and newly flooded, and wetland drainage within the catchment 

as important to explain change in Hyalella density (Table 5.4).  The mixed effects model used to 

explain change in density for Hyalella had a marginal R2 of 8% and a conditional R2 of 75%.   

 
Figure 5.3.  Back-transformed geometric least squares mean densities (m-3) and 95% lower 
(LCL) and upper (UCL) confidence limits of Hyalella azteca observed in 2004 or 2005 (circle), 
2010 (square), and 2011 (triangle) in three physiographic regions of the Prairie Pothole Region 
of North Dakota: Red River Valley (RRV), Northern Glaciated Plains (NGP), and Missouri 
Coteau (COT).  
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Figure 5.4.  Distribution of change in density (m-3) of Gammarus lacustris and Hyalella azteca 
from 2004 or 2005 to 2010 and 2011 observed in wetlands of the Prairie Pothole Region of 
North Dakota. 
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Figure 5.5.  Back-transformed geometric least squares mean changes in density (m-3) of Gammarus lacustris and Hyalella azteca from 
2004 or 2005 to 2010 (circles) and 2011 (squares) observed in wetlands of the Prairie Pothole Region of North Dakota. Mean changes 
were estimated for levels delimited by one-third quantiles for percent catchment area that was drained wetland, percent wetland area 
after drawdown during the drying period, and percent wetland area that was newly flooded beyond 2003–2005 water levels. 
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Table 5.3.  Estimated coefficients (β�) and standard errors for fixed effects within an a priori 
model used to examine the effect of water-level dynamics on change in density of Gammarus 
lacustris in wetlands of North Dakota from 2004 or 2005 to 2010 and 2011. 

Fixed Effects β� SE LCL UCL 

Intercept -1.226 0.957 -3.101 0.650 

Re-flooded -0.109 0.258 -0.615 0.397 

Newly Flooded -0.215 0.181 -0.569 0.138 

Maximum Depth 0.009 0.371 -0.719 0.736 

Drainage -0.154 0.134 -0.417 0.109 

Basin Full 0.022 0.010 0.002 0.042 

 

 

Table 5.4.  Estimated coefficients (β�) and standard errors for fixed effects within an a priori 
model used to examine the effect of water-level dynamics on change in density of Hyalella 
azteca in wetlands of North Dakota from 2004 or 2005 to 2010 and 2011. 

Fixed Effects β� SE LCL UCL 

Intercept -0.564 0.895 -2.318 1.191 

Re-flooded -0.201 0.260 -0.710 0.309 

Newly Flooded 0.032 0.230 -0.418 0.483 

Maximum Depth -1.058 0.401 -1.844 -0.273 

Drainage -0.163 0.106 -0.371 0.046 

Basin Full 0.025 0.011 0.005 0.046 
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Gammarus and Hyalella occurred in 49 and 76 of 81 wetlands, respectively, for which a 

complete set of fish abundance, salamander abundance, water-quality parameters and wetland 

vegetation variables were available in the 2004/05 and 2011 samples.  The best model to explain 

changes in Gammarus included change in fish occurrence and change in salamander occurrence, 

and this model had more support than an intercept only model (Table 5.5).  Increase in 

Gammarus density was positively correlated with occurrence of salamanders (β� = 1.706, SE = 

0.662, 95% CI = 0.408–3.004) and negatively correlated with occurrence of fish of any species 

(β� = -3.164, SE = 0.773, 95% CI = -4.679 to -1.648).  None of the models assembled from a 

priori variable suites had more support than an intercept only model to explain changes in 

Hyalella density (Table 5.6). 

 

Table 5.5.  Model selection results from alternative models composed of combinations of a 
priori variable suites, including water-level dynamics, water quality, change in occurrence of 
fish, salamander, or fathead minnows, used to examine their effect on change in density of 
Gammarus lacustris in wetlands of North Dakota from 2004 or 2005 to 2011.  Reported are: 
model log likelihood (LL), number of estimated parameters (K), Akaike’s Information Criterion 
for small sample size (AICC), increase over lowest AICC (∆AICC), and Akaike model weight 
(wi) for models (wi ≥0.01) and an intercept only model. 

Variable Suites LL K AICC ∆AICC wi 

Fish, Salamanders   -104.97 8 229.54 0.00 0.77 

Water-level Dynamics, 
Fish, Salamanders   

-101.58 11 232.30 2.76 0.19 

Water Quality, 
Fish, Salamanders   

-103.88 11 236.89 7.35 0.02 

Intercept Only -112.86 6 239.73 10.19 0.00 
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Table 5.6.  Model selection results from alternative models composed of combinations of a 
priori variable suites, including water-level dynamics, water quality, change in occurrence of 
fish, salamander, or fathead minnows, used to examine their effect on change in density of 
Hyalella azteca in wetlands of North Dakota from 2004 or 2005 to 2011.  Reported are: model 
log likelihood (LL), number of estimated parameters (K), Akaike’s Information Criterion for 
small sample size (AICC), increase over lowest AICC (∆AICC), and Akaike model weight (wi) 
for models (wi ≥0.01) and an intercept only model. 

Variable Suites LL K AICC ∆AICC wi 

Intercept Only -201.70 6 416.62 0.00 0.33 

Fathead  Minnows   -200.75 7 417.14 0.52 0.26 

Fish, Salamanders   -199.67 8 417.49 0.87 0.22 

Salamanders -201.49 7 418.62 2.00 0.12 

Water-level Dynamics -200.68 9 422.09 5.47 0.02 

Water-level Dynamics, 
Fathead Minnows 

-199.78 10 422.95 6.33 0.01 

Water-level Dynamics, 
Fish, Salamanders 

-198.71 11 423.54 6.92 0.01 

Water Quality -201.61 9 423.96 7.34 0.01 

Water-level Dynamics, 
Salamanders 

-200.40 10 424.18 7.56 0.01 

Water Quality, 
Fathead Minnows 

-200.64 10 424.66 8.04 0.01 

 
 

Discussion 

 While overall amphipod densities during spring 2010 and 2011 generally were similar to 

those low values during spring 2004 and 2005 (Anteau and Afton 2008), there were changes 

within individual wetlands that provided some insight into factors that influenced change in 

amphipod density.  I found weak evidence that high levels of historical wetland drainage within 

catchments of remaining wetlands negatively impacted densities of both Hyalella and 

Gammarus.  I also found evidence of greater increases in both species of amphipod within 
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wetlands that filled more of their topographic basins; this might be related to more-full basins 

having or being connected to deeper-water overwintering habitat.  However, my data also 

suggests that Hyalella were less abundant in wetlands of greater depth.  This could be associated 

to differences in other Hyalella habitat characteristic that are coincident with greater wetland 

depth, such as structure of submerged aquatic vegetation communities, or those wetlands 

becoming suitable for fish.  However, fish did not appear to be important in explaining changes 

in Hyalella densities. 

Water levels in wetlands fluctuated in response to wet–dry periods, but the influence of 

climate variability on water-level fluctuations differed depending upon the amount of wetland 

drainage within the catchment (Chapter 2).  Wetlands within catchments with more historical 

wetland drainage experienced less drawdown and more flooding than those in less drained 

catchments (<2% area drained).  However, I did not find evidence of increased amphipod 

densities in wetlands where water-level fluctuations occurred whether it be new flooding 

terrestrial areas or re-flooding of dried wetland shore.  Perhaps there is a more direct negative 

influence limiting amphipod densities than are nutrients limiting amphipod densities in these 

wetlands. 

Amphipods are highly productive and capable of producing multiple broods within a 

breeding season (Covich and Thorp 1991; Wen 1992; Pickard and Benke 1996); therefore, it is 

unlikely that sampling in 2010 and 2011 was too early after the drawdown to observe a pulse in 

productivity of Gammarus and Hyalella in response to cycling of nutrients.  Having an R-

selected life history (Pianka 1970), it is likely that amphipod densities would respond to 

improved hydrologic and nutrient conditions within the first two years following of the wet 

period.  Accordingly, I believe my study duration captured the important changes in amphipod 
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densities that can be attributed to the rewetting event of 2009.  While mean amphipod densities 

were lower in 2010 than in 2011 in some instances, the difference is more likely a result of a 

further increase in water levels that increased the number of wetlands suitable habitat for 

overwinter survival of amphipods.  Indeed, I observed overwinter survival of amphipod 

populations of both species in more wetlands in 2011 than in 2010.  An increase in wetlands 

suitable for overwinter survival can contribute to improved amphipod densities across landscapes 

within the region.  Perhaps of more importance to waterbird conservation is understanding what 

factors limit amphipod productivity within individual wetlands and how some wetlands can 

support extremely high densities of amphipods.  

Historical estimates of amphipod densities are too sparse to allow for rigorous 

quantitative comparisons with current densities.  However, Anteau and Afton (2008) concluded 

that densities in 2004 and 2005 likely had declined from historical levels based on comparisons 

with available amphipod data and marked shifts in lesser scaup diets away from amphipods to 

lesser-preferred foods (Anteau and Afton 2006; Strand et al. 2008; Anteau and Afton 2009a) and 

concurrent declines in lipid reserves and lipid acquisition of lesser scaup during spring migration 

(Anteau and Afton 2004, 2009b, 2011).  I quantitatively evaluated our estimates in relation to 

those of Anteau and Afton (2008) in North Dakota, and our estimates are similar to those 

reported low estimates.  Accordingly, my results suggest that the potential decline in amphipod 

densities in North Dakota that Anteau and Afton (2008) observed was not driven by the temporal 

position between wet–dry periods when data were collected.   

During 2010–2011 there were more ideal hydrologic conditions than that during 2004–

2005. I expected wetlands with high water-levels following the dry period in 2006–2008 to 

contain greater nutrient concentrations that would benefit wetland productivity.  Indeed, I did 
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observe water-level fluctuations during the climatic wet–dry periods in wetlands with less 

drainage within their catchment, yet finding little overall change in amphipod density between 

sampling periods perhaps suggests either 1) that amphipod densities are now less tied to temporal 

position in climate wet–dry fluctuations than they were previously or 2) amphipods are not as 

responsive to climate as predicted.  Although extremes of climate conditions that occur across 

decades likely do effect amphipod populations by temporarily reducing available suitable habitat, 

long-term declines in amphipod density across the region are more likely a result of landscape 

modifications that affect wetland hydrology, increased sedimentation, eutrophication, and 

increased agrochemical residues entering wetlands (Grue et al. 1988; Gleason and Euliss 1998; 

Anteau et al. 2011).  Thus availability of suitable habitat for amphipods in lacustrine wetlands 

may be more-permanently reduced. 
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CHAPTER 6.  A LANDSCAPE-SCALE EVALUATION OF THE “ALTERNATIVE 

STABLE STATE” HYPOTHESIS WITHIN LARGE NORTHERN PRAIRIE 

WETLANDS IN CONTEXT OF WATERBIRD CONSERVATION 

Abstract 

Trophic structure of wetlands can be a useful indicator of their biological productivity, 

biodiversity, and overall perceived quality.  The “alternative stable states” hypothesis suggests 

ecosystems can exist in discrete alternative trophic structures.  In wetlands, alternative states 

include a clear state where primary productivity is dominated by macrophytes and a turbid state 

where primary productivity is dominated by phytoplankton.  Chlorophyll a (chl a) concentration 

in water is commonly used to indicate trophic structure in wetlands because it is a key pigment in 

phytoplankton.  I conducted a landscape-scale evaluation of the alternative stable state 

hypothesis by examining the distribution of remotely-sensed chl a concentrations during 2011 

within 978 randomly selected semipermanent and permanent wetlands in the Prairie Pothole 

Region of North Dakota.  Under the alternative stable states hypothesis I predicted that two 

alternative states should be observable as a bimodal distribution in a large sample of wetlands.  

Additionally, I evaluated how wetland chl a concentrations were related to consolidation 

drainage, upland land use, and fish abundance.  The distribution of wetland mean chl a 

concentrations was unimodal, skewed right, and lacked evidence of discontinuity.  Chl a 

concentration was positively correlated with the percent of the wetland basin filled by surface 

water (β� = 0.0090 ±0.0018 SE) and negatively correlated with the percent of surrounding upland 

that was grassland (β� = -0.6415 ±0.1993 SE).  My evaluation did not support predictions of the 

alternative stable state hypothesis.  Rather, my data suggest that these wetlands behave in a 

continuum of trophic structure, and that manifestation of trophic structure is influenced by a 
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continuum of perturbations.  Accordingly, for the purposes of improving conservation planning, 

my findings suggest that a continuous model would be more useful than characterizing wetlands 

within the framework of “alternative stable states”. 

Introduction 

Anthropogenic modifications within wetland landscapes can potentially have catastrophic 

effects on wetland trophic structure—an important construct of relationships that can be used to 

index biological productivity, biodiversity, and other services provided by wetlands.  

Modifications that alter hydrology, nutrient cycling, vegetation communities, and allow for fish 

to persist may lead to less desirable trophic structures within wetlands (Hanson and Butler 

1994a; Carpenter et al. 1998; Sánchez-Carrillo and Álvarez-Cobelas 2001; Chapters 2–4).  

Chemical, physical, and biologic characteristics are often used as indicators of trophic structure 

in wetlands and ultimately as a measure of wetland productivity (Carlson 1977; Grue et al. 1988; 

Tome et al. 1995; Anteau and Afton 2008; Anteau et al. 2011).  Accordingly, the capability to 

make landscape-scale assessments of wetland trophic structure may prove useful for managers to 

better assess wetland condition and understand influences of land use practices on that wetland 

condition.  

Scheffer et al. (1993) proposed that there are two alternative stable states for shallow 

lakes (<3 m depth; hereafter wetlands), a clear state where primary productivity is dominated by 

macrophytes and a turbid state where primary productivity is dominated by phytoplankton 

(hereafter the “alternative stable states” hypothesis).  Later, Scheffer and van Nes (2007) 

acknowledged various alternative states in temperate wetlands that are alternatively dominated 

by primary producers including: charophytes, submerged angiosperms, green algae, or 

cyanobacteria.  However, the alternative stable states hypothesis maintains that there is 
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discontinuity in wetland community responses to environmental changes resulting in alternative 

equilibria producing multiple distinguishable trophic states (Scheffer and van Nes 2007).  Within 

the core example of alternative stable states, macrophyte-dominated communities have food 

webs with higher density and diversity of invertebrates and vertebrates than those of 

phytoplankton-dominated wetlands (Hargeby et al. 1994; Scheffer and van Nes 2007).  

Consequently, clear-water wetlands generally provide more food and better foraging efficiency 

for waterbirds than do those dominated by phytoplankton (Anteau and Afton 2008, 2009).  

Abundance of clear-water wetlands with high productivity of aquatic macroinvertebrates are 

important habitat for many waterbirds that breed locally in the Prairie Pothole Region and for 

those migrating through to breed elsewhere (Batt et al. 1989; Swanson and Duebbert 1989; 

Anteau and Afton 2006, 2011).   

 According to the alternative stable state hypothesis, alternate states are shaped by 

stabilizing feedback mechanisms within wetland communities (Scheffer 2001).  In clear-water 

wetlands, submerged aquatic vegetation can maintain a clear state by 1) reducing resuspension of 

sediments (Dieter 1990; James and Barko 1990); 2) suppressing phytoplankton through 

reduction of available nutrients and releasing allelochemicals; and 3) providing refuge for 

phytoplankton-grazing zooplankton and habitat for alternative prey for predators of 

phytoplankton-grazing zooplankton (Timms and Moss 1984; Scheffer et al. 1993; Hanson and 

Butler 1994a).  In turbid-water wetlands, submerged vegetation growth is prevented by 

obstruction of light from high phytoplankton densities or suspended sediments (Scheffer et al. 

1993).  Further, fish can increase turbidity of wetlands by resuspending sediments and by 

preying upon zooplankton that consume phytoplankton, with cascading effects on the community 

of submerged vegetation and macroinvertebrates dependent on that vegetation for habitat 
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(Swanson and Nelson 1970; Timms and Moss 1984; Carpenter et al. 1985; Scheffer et al. 1993; 

Hanson and Butler 1994a, b; Zimmer et al. 2003).  Communities in each state can resist against 

some degree of perturbation within the wetland basin or catchment, such as increased 

sedimentation, nutrification, change in fish density, water-level fluctuation, or climate variation 

(Scheffer et al. 1993; Hanson and Butler 1994a; Gunderson and Pritchard 2002; Bayley et al. 

2007).  However, beyond some threshold, a catastrophic regime shift may occur as the wetland 

enters an alternative stable state (Scheffer et al. 1993; Scheffer 2001) with consequences that 

affect productivity, species density, and species richness (Holling 1973; May 1977; Scheffer et 

al. 2001; Folke et al. 2004).   

Chlorophyll a (chl a) concentrations are typically used as a proximate estimator of 

biomass of phytoplankton in aquatic systems (e.g., Carlson 1977; Scheffer et al. 1997; Bayley 

and Prather 2003; Zimmer et al. 2009).  Previous investigations have used chl a concentration to 

differentiate clear from turbid wetlands in the Prairie Pothole Region of Minnesota (Zimmer et 

al. 2009) and in boreal wetlands of Alberta (Bayley and Prather 2003).  The alternative stable 

states hypothesis postulates that wetlands can be characterized by either clear or turbid states, 

thus I predict that for this hypothesis to be supported wetland chl a concentrations should follow 

a bimodal distribution across the region.  Further, evaluation of the frequency of turbid wetlands 

in various landscape conditions may provide insight into levels of disturbance that have potential 

to cause a regime shift.  That information could be used to focus conservation or restoration 

efforts on wetlands that are sensitive to a regime shift. 

Remote sensing-techniques used to estimate chl a concentrations make it possible to 

conduct landscape-scale assessment of wetland trophic structure.  Successful estimation of chl a 

concentrations using Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus 
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(ETM+) imagery have been made in deep, large lakes and reservoirs (Brivio et al. 2001; Cheng 

and Lei 2001), and in shallow, smaller lakes (Tyler et al. 2006; Sass et al. 2007).   Use of remote 

sensing techniques adapted for estimation of chl a in prairie wetlands can allow for a large 

enough sample of wetlands required to adequately evaluate the prediction of the alternative 

stable state hypothesis. 

I evaluated the alternative stable state hypothesis within wetlands in the Prairie Pothole 

Region of North Dakota.  To conduct a landscape-scale evaluation of the distribution of clear and 

turbid wetlands, I developed remote sensing techniques of chl a concentrations for larger 

semipermanent and shallow-water permanent wetlands.  I remotely-sensed chl a concentrations 

in a large sample of wetlands and evaluated the distribution for evidence of bimodality that 

would support the prediction of alternative discrete states.  I also evaluated if anthropogenic 

modifications within wetland catchments had a negative impact on wetland trophic structure by 

increasing chl a concentrations.  I evaluated whether these land use and upland modification 

effects better predicted the probability of a wetland being turbid within a binomial model or 

alternatively, wetland chl a concentrations within a continuous model.   

Methods 

Study Area 

I focused my effort to adapt remote sensing predictive methods for detection of chl a 

concentration and evaluation of the alternative stable states hypothesis on large (>10 ha) 

semipermanent and shallow-water permanent wetlands within the Prairie Pothole Region in 

North Dakota (Figure 6.1).  I used a sample of 153 lacustrine semipermanent and shallow-water 

permanent wetlands that were previously randomly selected for purposes of a previous study 

(Anteau and Afton 2008; Chapter 2–5).  These wetlands were known from the previous studies 
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to have open-water areas >120 m across.  For each of these wetlands, detailed geomorphological 

and surface hydrology data were available and these wetlands were used to evaluate the 

influence of land use and upland modifications on chl a concentration.  For development and 

evaluation of remote sensing methods, I selected a subsample of 23 wetlands that uniformly 

represented the range of chl a concentration found in the region.  These relative concentrations 

were estimated from field observation and satellite imagery.  I opportunistically included an 

additional five wetlands in the sample that had apparent high chl a concentration to extend the 

high end of the range; these wetlands were not in the original sample. 

For purposes of evaluating the alternative stable state hypothesis, I further selected a 

larger sample of 1,000 additional wetlands to evaluate the distribution of chl a concentration.  

These wetlands were randomly selected from the National Wetlands Inventory (NWI; U.S. Fish 

and Wildlife Service 2003) using basin class coverage of NWI data (Cowardin et al. 1995; 

Reynolds et al. 1996; data provided by Habitat and Population Evaluation Team, U.S. Fish and 

Wildlife Service, Bismarck, ND).  I allocated selection of wetlands across three physiographic 

regions of North Dakota, including: Missouri Coteau (34%), Northern Glaciated Plains (60%), 

and Red River Valley (6%; Figure 6.1).  I restricted wetlands to those that were >10 ha basin 

area to improve probability of sufficient open-water area for remote sensing, compactness ratio 

>50 (i.e., basin area (m2) / basin perimeter (m)) to eliminate wetlands too narrow for sufficient 

open-water area, and not engineered wetlands (e.g. holding ponds).   I restricted lake basins 

(NWI lacustrine system) to those classified with the most permanent wetland area as littoral 

subsystems and to not include large lakes (<400 ha). 
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Figure 6.1.  North Dakota study area showing location of semipermanent and permanent 
wetlands within which chlorophyll a concentration during 2011 was remotely-sensed.  Shaded 
areas are three physiographic regions of the Prairie Pothole Region: Red River Valley (RRV), 
Northern Glaciated Plains (NGP), and Missouri Coteau (COT). 

 

Field Data Collection 

Chl a has traditionally been measured by collecting water samples in the field for 

laboratory analysis, but more recently in situ point sampling has been possible due to 

development of optical chl a probes (see Anteau and Afton 2008).  In situ sampling is far less 

time intensive than laboratory analysis and can facilitate better spatial representation in field 

studies.  In situ sampling may be less accurate than laboratory analysis; however, relevance of 

any field sampling is limited by the spatial extent of the sampling effort.  In situ sampling can 

afford better spatial representation.   
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During late June through early September in 2011 or 2012, I measured chl a 

concentrations in 28 different wetlands using in situ sonde point sample measurements and 

collecting water samples for laboratory fluorometry.  I expected chl a concentration to peak 

during this period of the summer, thus providing the widest range of chl a concentration.  

Estimation of phytoplankton biomass using chl a concentration is sensitive time of day (APHA 

1998); therefore, I timed field measurements to correspond to the same time of day as Landsat 

satellite imagery acquisitions, approximately 10:00–14:00 CDT, and only on mostly cloud-free 

days no more than two days after a generally cloud-free acquisition of Landsat image.  I also 

limited data collection to days with calm winds.  I used a small boat to make measurements and 

collect water samples within wetlands. 

In situ measurements and collected water samples were taken from open-water areas in 

wetlands (>30 m of open water in each direction) within 30×30 m sampling frames that were 

spatially aligned with pixels from either the previous TM/ETM+ image if sampling on the same 

day as image acquisition, or the image of interest when sampling after image acquisition.  I 

sampled 15–25 sampling frames within each wetland, or all frames if < 25 were available.  

Sampling frames were arranged in clusters of five adjacent frames, and clusters were distributed 

to different areas within the wetland.  Within each frame, I recorded in situ point measurements 

approximately at the center and 10–12 m from center in three directions (n = 4); each point 

sample consisted of 10 measurements collected at 1 second intervals.  I collected one water 

sample in smaller wetlands or two samples in larger wetlands, each at the center of a sampling 

frame.  All in situ measurements and water samples were georeferenced using a Trimble GeoXT 

(differential correction; Trimble Navigation, Sunnyvale, CA). 
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 I used YSI 6025 chlorophyll probe and YSI 6136 turbidity probe (YSI Incorporated, 

Yellow Springs, Ohio) for in situ measurements at each sample point.  At the beginning of each 

sampling day, I calibrated the chlorophyll probe to a zero measurement using distilled water.  I 

also recorded measurements in 0.5 mg/L Rhoadamine WT at the beginning and end of each 

sampling day to check for sensor drift.  I calibrated the turbidity probe once at the beginning of 

each season.  I aggregated multiple readings from each point sample and the four point samples 

within the sampling frame to calculate a median value for chlorophyll and turbidity.  Use of the 

median (rather than the mean) value better controls for erroneous readings that occur periodically 

in electronic-probe measurements.  

I collected water samples that corresponded directly to the georeferenced in situ location 

to enable post-calibration of the probe using results from laboratory fluorometric analysis of chl 

a.  Each water sample consisted of 1 L of water collected just below the surface.  Water samples 

were filtered through a glass fiber filter (45 µm, 47 mm diameter).  Filters were immediately 

frozen for fluorometry analysis (APHA 1998) within 10 days of collection.  Laboratory analysis 

was performed by North Dakota Department of Health’s Surface Water Quality Management 

Program.  I used regression analysis without an intercept to calibrate in situ chl a measurements 

to laboratory fluorometry results.   

Landsat Data 

I obtained Landsat 5 TM and Landsat 7 ETM+ product level 1T precision and terrain 

corrected images from Earth Explorer (U.S. Geological Survey 2014).  A total of 19 images of 

the study area were used from scenes within path 29–35 and row 26–28 of the Worldwide 

Reference System 2 (Table 6.1).  All images used were <12% cloud cover, with the exception of  

two images with 18% and 45% cloud cover from which only cloud-free portions of the image 
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were used to correspond to cloud-free field data collection.  I converted image digital numbers to 

top-of-atmospheric reflectance using at-sensor values (Chander et al. 2009), and then I used the 

Automated Cloud-Cover Assessment algorithm to detected and masked clouds (Irish et al. 2006).  

I corrected images for atmospheric effects using the 6S algorithm (Vermote et al. 1997) with 

optical depth from the Moderate Resolution Imaging Spectroradiometer (MODIS) Level 3 Daily 

Atmosphere Gridded Product (NASA 2014).  For each scene, I calculated the optical depth as the 

scene average of mean optical land and ocean values from the MODIS product. 

I extracted reflectance values (R) for TM/ETM+ bands 1–5 and 7 (Table 6.2) from pixels 

that corresponded to in situ measurement sample frames or open-water pixels from the 1,000 

wetlands.  I used images acquired between 3 July and 5 September of 2011 with preference for 

cloud-free images nearest 19 July (ordinal day 200).  To select open-water pixels within the 

1,000 randomly selected wetlands, I initially offset (i.e., buffered) the perimeter of the NWI 

basin class coverage polygon 60 m toward the center of the wetland.  I then applied a series of 

filters to eliminate pixels that were not registering as open-water using band 5 (RB5 > 0.03), 

registering apparent emergent or submerged vegetation (RB4 / RB2 ≥ 2), or had a signature of a 

hypersaline turbid water wetland (RB1 > 0.05).   Hypersaline wetlands were excluded from this 

analysis because their water quality condition is beyond the scope of this analysis, and their 

overall brightness within the spectral signature present problems remotely-sensing a chl a 

signature.  From the initial 153 wetland sample combined with the additional 1,000 randomly 

selected wetlands, 978 wetlands were suitable for remote sensing of chl a concentration after 

open-water pixel filters were applied (>1 open-water pixel). 
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Table 6.1.  Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) 
scenes used to build and evaluate a predictive model of Chlorophyll a concentration in wetlands 
(Model) and to make predictions within wetlands in a landscape-scale assessment (Predict).  
Listed are the Landsat Scene Identifier, year of image (Year), ordinal day of year (Day), World 
Reference System 2 scene (Row and Path), and optical sensor that acquire the image (Sensor). 

Scene Identifier Year Day Path Row Sensor Model Predict 

LT50330262011184PAC01 2011 184 33 26 TM Yes No 

LT50330272011184PAC01 2011 184 33 27 TM Yes Yes 

LT50310272011186PAC01 2011 186 31 27 TM Yes Yes 

LT50310282011186PAC01 2011 186 31 28 TM No Yes 

LT50320262011193PAC01 2011 193 32 26 TM No Yes 

LT50320272011193PAC01 2011 193 32 27 TM Yes Yes 

LT50310262011202PAC01 2011 202 31 26 TM No Yes 

LT50300262011211PAC01 2011 211 30 26 TM No Yes 

LT50300272011211PAC01 2011 211 30 27 TM Yes Yes 

LT50300282011211PAC01 2011 211 30 28 TM No Yes 

LT50320262011225PAC01 2011 225 32 26 TM No Yes 

LT50350262011230PAC01 2011 230 35 26 TM No Yes 

LT50290282011236PAC03 2011 236 29 28 TM No Yes 

LT50340262011239PAC01 2011 239 34 26 TM No Yes 

LT50330262011248PAC01 2011 248 33 26 TM No Yes 

LE70300282012174EDC00 2012 174 30 28 ETM+ Yes No 

LE70300282012190EDC00 2012 190 30 28 ETM+ Yes No 

LE70300272012222EDC00 2012 222 30 27 ETM+ Yes No 

LE70310282012229EDC00 2012 229 31 28 ETM+ Yes No 
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Table 6.2.  Spectral resolution (µm) for each band of Landsat Thematic Mapper (TM) and 
Enhanced Thematic Mapper Plus (ETM+) imagery used to develop a remote sensing equation 
for Chlorophyll a concentration.  Band 6 (thermal) was not used.  Data are courtesy of U.S. 
Geological Survey (http://landsat.usgs.gov/). 

Landsat TM ETM+ 

Band 1 0.45–0.52 0.45–0.52 

Band 2 0.52–0.60 0.52–0.60 

Band 3 0.63–0.69 0.63–0.69 

Band 4 0.76–0.90 0.77–0.90 

Band 5 1.55–1.75 1.55–1.75 

Band 7 2.08–2.35 2.09–2.35 

 
 
Landscape Data 

 I assembled wetland geomorphological characteristics and land cover/land use from 

uplands surrounding each of the 153 wetlands in the initial sample for which I was able to 

predict chl a concentrations in 2011 using TM.   I used catchment area, percent of wetland 

drainage within catchment, percent wetland filled its topographic basin, and water surface area 

rate of change from Chapter 2 (also see McCauley et al. In Review).  I characterized upland land 

use by using the percent of the catchment that was cropland estimated by photointerpretation 

(McCauley et al. In Review; Chapter 2).  Additionally, I summarized percent of upland within 

400 m and 800 m of each wetland during 2011 that was crop, grass, and specifically corn or 

soybeans using the Cropland Data Layer (CDL; NASS 2011).   I evaluated CDL as a measure of 

land cover/land use at fixed distances because the photointerpretation method using defined 

catchments was labor intensive and would not be practical on a larger sample of wetlands.  

Accordingly, I created seven different measures of land cover/land use to evaluate.  
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Wetland Surface Area Dynamics 

I included water dynamics in my analysis evaluating influence of land use and upland 

modifications on wetland chl a concentrations because vegetation communities can be 

influenced by wetland water dynamics (Weller and Spatcher 1965; van der Valk and Davis 

1978).  In Chapter 2, I defined wetland water surface area dynamics within the variable climate 

conditions during 2003–2010 in terms of rate of decrease during a drying phase and rate of 

increase during a wetting phase.  I calculated these rates using the maximum surface area during 

the wet periods and minimum surface are during the dry period within the equation:  

�	 
 Surface Area�����Surface Area�������� 

Statistical Analysis 

Post-calibration of in situ chlorophyll a 

I tested the importance of turbidity within the regression model as a covariate to account 

for potential differences between in situ and filtered laboratory samples.  I evaluated collinearity 

between chl ain situ and turbidity using variance inflation factor (vif = 2.31).  I used the final 

regression equation to calculate post-calibrate chl a (chl apc) values for all in situ measurements 

(R Development Core Team 2010). 

Landsat to predict in situ chlorophyll a 

For development of a model to predict wetland chl a concentration using TM/ETM+ data 

I used in situ sampling frames corresponding to image pixels as the observational unit.  I 

randomly split in situ sampling frames into two halves equal in number to create a model 

development data set and a model evaluation data set.  I split sampling frames into development 

and evaluation groups rather than individual wetlands because I was only able to sample 26 

wetlands.  I evaluated previously published (see list in Sass et al. 2007) and new combinations of 
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single bands, multiple band combinations, and principal components of visual spectrum bands 

(1–3) and all non-thermal bands (1–5, 7) in regression analysis as predictor variables of chl apc 

(ln) .  I excluded predictor variables with strong collinearity (r ≥ 0.40) to others in the same 

model.   I used 95% confidence intervals to evaluate importance of predictor variables and model 

R2 values to compare goodness-of-fit among models and to select the best model for making 

predictions.   I then used the best model to make predictions (chl ars) within in situ sampling 

frames from the evaluation data set.  I evaluated regression coefficients and correlation to 

determine adequacy of chl ars as a predictor of chl apc.  Finally, I evaluated prediction 

performance at a wetland resolution by regressing wetland mean chl apc on wetland mean chl ars. 

Landscape distribution of wetland chlorophyll a concentration 

 I used the chl ars predictive equation to estimate chl a concentration in 978 randomly 

selected wetlands at one point in time during 2011.  I applied the equation to open-water pixels 

from TM images, and then calculated the wetland mean chl ars.  I evaluated whether the 

distribution of chl a concentrations in wetlands supported the alternative stable states hypothesis 

by plotting a histogram of wetland mean chl ars concentrations.  Interpretation of distributions by 

categorical frequency is sensitive to selection of category break points and bin ranges.  Clearly, 

to evaluate bimodality a uniform bin size is needed.  I used 5 µg L-1 bins to represent wetland chl 

a concentrations.  A distinct bimodal distribution would support predictions made under the 

hypothesis of clear and turbid wetlands, measurable by chl a. 

Landscape factors influencing chlorophyll a concentration 

 I quantitatively assessed two models for evaluating influences of land use and upland 

modifications on trophic structure.  The first was an alternative stable state model that examined 

the probability of a wetland being in a turbid or clear state (as defined by Bayley and Prather 
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2003; Zimmer et al. 2009) using a binomial distribution.  Second, represented an alternative 

research hypothesis where trophic status changes continuously with changes in landscape 

variables.  For that model a continuous distribution of wetland chl a concentration was used.  In 

the prediction following the alternative stable state hypothesis, landscape variables should better 

predict the probability of a wetland being turbid within a binomial distribution than would 

landscape variables predict wetland chl a concentration within a continuous distribution.  Within 

the initial sample of wetlands for which detailed geomorphological and surface hydrology data 

were available, 117 wetlands were suitable for remote sensing of chl a.  I used chl ars derived 

from TM data collected in 2011 as the response variable in continuous regression analysis and 

classified chl ars >20 µg L-1 as a turbid wetland in logistic regression analysis (R Development 

Core Team 2010).  For each analysis I used the same a priori model that included land use and 

upland modification predictor variables from wetland for which I had detailed geomorphological 

and surface hydrology data.   Predictors included: wetland basin percent full, percent catchment 

area that was drained wetland, catchment area (ln), water surface area dynamics, and land 

cover/land use.  Prior to fitting my a priori model, evaluated drying rate versus wetting rate as a 

measure of water surface area and seven different measures of land use/land cover by iteratively 

fitting each one with all other predictor variables of the a priori model.  I repeated this process 

for both the binomial and continuous models.  I selected the model with the greatest R2.  I 

determined predictor variables to be important in the model if 95% confidence intervals of 

parameter estimates did not overlap zero.  I plotted fitted values versus response values for both 

the binomial model and continuous model (one point omitted at [21,132]).  I compared R2
 to 

evaluate which model distribution was better supported by my data.   
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Results 

Post-Calibration of In Situ Chlorophyll a 

I recorded 1876 in situ point samples and collected 45 water samples within 28 wetlands.  

In situ chl a measurements predicted laboratory fluorometry values well (R2 = 0.93, F2, 43 = 

284.9) provided that the level of turbidity was in the model:  

Chl ���� � 0.47#$0.18 SE()Chl �*+ ,*-./ 0  2.90 #$0.21 SE()turbidity/ 

Landsat to Predict In Situ Chlorophyll a 

The best models to predict chl a concentration in wetlands using TM and ETM+ were: 

�	8Chl �9: ;<= � 6.70 0  9.27 ? RAB  C RAD  C  RAE
�RAB  0  RAD 0  RAE

F C 0.74 ?GRAHIJF 

�	8Chl �9: K;<L= � 6.87 0  17.95  ? RAB  C  RAD  C  RAE
�RAB  0  RAD 0  RAE

F  C 0.74 ?GRAHIJF 

Each parameter in the model was important for prediction (Table 6.3).  Chl ars described 72% 

(R2; F4, 311 = 197.2) of the variability within in situ chl apc values.  In the evaluation data set, chl 

ars predicted in situ chl apc values with an intercept of 3.970 (SE = 3.353) and slope of 1.269(SE 

= 0.048), with an R2 of 69% (F1, 314 = 693.9).  Aggregated mean chl ars and in situ chl apc values 

in 26 wetlands were highly correlated (r = 0.93, t = 3.733, df = 24, P = 0.005; Figure 6.2). 

Landscape Distribution of Wetland Chlorophyll a Concentration 

 Chl ars ranged 3–714 µg L-1, with a mean of 27 µg L-1 and median of 17 µg L-1.  The 

distribution of wetland mean chl a concentration was skewed right (Figure 6.3), and no evidence 

of bimodality was present in a histogram of truncated at 100 µg chl a L-1 (Figure 6.4).  

Landscape Factors Influencing Chlorophyll a Concentration 

 Chl ars ranged 4–133 µg L-1, with a mean of 19 µg L-1 and median of 15 µg L-1.  In the a 

priori model describing the influence of land use and upland modifications on wetland chl a 
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concentration the measures that best fit the data, for those parameters that had multiple measures, 

were rate of water surface area rate of decrease during the drying phase and CDL derived percent 

grassland within 400 m of the wetland (Table 6.4).  These two predictor variables were used in 

addition to wetland basin percent full, percent catchment area that was drained wetland, and 

wetland catchment area (ln).  The binomial model with the same variables was ranked second 

best, but model fit was essentially not different from the top ranked model (Table 6.4).  The 

continuous model accounted for nearly twice the amount of variability in trophic structure (R2 = 

0.32, F5, 111 = 10.61; Figure 6.5A) than the binomial model (R2 = 0.19, χ2
df=5 = 26.33; Figure 

6.5B).  Wetland basin percent full was positively correlated with chl a concentration, and percent 

upland that was grassland was negatively correlated with chl a concentration (Table 6.5).  There 

was not sufficient evidence for correlation of any of the other predictor variables with chl a 

concentration (Table 6.5). 

 

Table 6.3.  Regression parameter estimates from a model developed to detect chlorophyll a 
concentrations (ln) within semipermanent and permanent wetlands using Landsat Thematic 
Mapper (TM) and Enhanced Thematic Mapper Plus image data.  Included are: estimated 
coefficients (β�), standard errors (SE), and lower (LCL) and upper (UCL) 95% confidence limits. 
At-surface-reflectance values corrected for atmospheric effects (R band #) were used to develop the 
model.  Predictor X1 = (R3 – R5 – R7) / (R3 + R5 + R7)

0.5 and X2 = R4
-0.5.  A colon indicates an 

interaction predictor term. 

Predictor  β� SE LCL UCL 

Intercept 6.869 0.193 6.491 7.247 

X1 17.948 1.493 15.022 20.873 

X2 -0.740 0.032 -0.803 -0.676 

Sensor TM
 -0.174 0.081 -0.334 -0.015 

X1:Sensor TM -8.675 1.627 -11.863 -5.486 
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Figure 6.2.  Accuracy evaluation of remotely-sensed chlorophyll a concentrations to predict 
mean in situ measurements within 26 semipermanent and permanent wetlands in North Dakota.  
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Figure 6.3.  Natural log distribution of remotely-sensed chlorophyll a concentrations within 978 
randomly selected semipermanent and permanent wetlands in North Dakota. 
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Figure 6.4.  Distribution of remotely-sensed chlorophyll a concentrations within 965 of 978 
randomly selected semipermanent and permanent wetlands in North Dakota.  Histogram 
truncated at 100 µg L-1. 
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Table 6.4.  Comparison of coefficient of determination (R2) from regression analysis of two 
alternative a priori models used to evaluate the influence of land use and upland modifications 
on probability of a wetland being in a turbid state using a binomial distribution (Model 1) or 
concentration of Chlorophyll a within wetlands using a continuous distribution (Model 2).  
Water surface area change during alternative climatic phases (Phase) and measures of land 
use/land cover (LU/LC) were used in addition to wetland basin percent full, percent catchment 
area that was drained wetland, and wetland catchment area (ln).  See text for details. 

Phase LU/LC Model 1: R2 Model 2: R2 

Drying Grassland: 400 m 0.201 0.323 

Drying Grassland: 800 m 0.195 0.322 

Wetting Grassland: 400 m 0.205 0.320 

Wetting Grassland: 800 m 0.200 0.319 

Drying Cropland: 400 m 0.166 0.272 

Drying Cropland: 800 m 0.160 0.268 

Wetting Cropland: 400 m 0.168 0.265 

Drying Corn & Soy: 800 m 0.147 0.262 

Drying Corn & Soy: 400 m 0.148 0.262 

Drying Cropland: Catchment 0.145 0.262 

Wetting Cropland: 800 m 0.162 0.260 

Wetting Corn & Soy: 800 m 0.147 0.253 

Wetting Corn & Soy: 400 m 0.148 0.252 

Wetting Cropland: Catchment 0.143 0.249 
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Figure 6.5.  Remotely-sensed chlorophyll a concentrations versus fitted values from alternative 
models using influence of land use and upland modifications to predict A) wetland chlorophyll a 
concentrations modeled in a continuous distribution, and B) probability of a wetland being turbid 
(>20 µg L-1).  The diagonal line in A is a 1:1 relationship, and the horizontal line in B separates 
wetlands classified as clear-water wetlands (open circles) from turbid-water wetlands (filled 
circles) classified using a threshold of >20 µg L-1. 
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Table 6.5.  Regression parameter estimates from a model used to evaluate the influence of land 
use and upland modifications on chlorophyll a concentrations (ln) within 110 semipermanent and 
permanent.  Included are: estimated coefficients (β�), standard errors (SE), and lower (LCL) and 
upper (UCL) 95% confidence limits. 

Predictor β� SE LCL UCL 

Intercept 2.223 0.259 1.716 2.730 

Basin Full 0.009 0.002 0.005 0.013 

Catchment Drainage -0.002 0.019 -0.039 0.034 

Drying Dynamic   0.201 0.155 -0.103 0.506 

Grassland -0.642 0.199 -1.032 -0.251 

Catchment Area (ln) 0.043 0.029 -0.015 0.101 

 

Discussion 

In accordance with the alternative stable states hypothesis, I predicted that wetland chl a 

concentration across the Prairie Pothole Region in North Dakota would follow a bimodal 

distribution.  However, my results did not provide support for that prediction, but rather I found 

chl a concentrations exhibited a continuous, right-skewed distribution.  Previous investigations 

have used chl a concentration to differentiated clear from turbid wetlands in the Prairie Pothole 

Region in Minnesota using <22 µg L-1 as clear lakes and >31 µg L-1 as turbid lakes (Zimmer et 

al. 2009; n= 72) and in boreal wetlands in Alberta where a threshold of 18 µg L-1 differentiate 

clear from turbid (Bayley et al. 2007; n = 112).  Earlier, Bayley and Prather (2003) found that 

62% of 148 boreal wetlands in Alberta were in a typical clear state with a high density of 

submerged aquatic vegetation and low chl a concentration, or in a turbid state with high chl a 

and low density of submerged aquatic vegetation; while, the remaining 38% of wetlands were 

either high or low in both density of submerged aquatic vegetation and chl a concentration.  If 
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alternative states do exist, separation between the modes of each state should be more distinct in 

a larger sample across landscapes within a region.  Yet, I found more evidence to support a 

continuous distribution. 

There are alternative explanations as to why a continuous rather than bimodal distribution 

better describes wetland chl a concentration evaluated across landscapes within the Prairie 

Pothole Region.  If state-change control points are driven by climate, chemical constituents, 

nutrients, depth and wetland size (Scheffer and van Nes 2007), then heterogeneity among driving 

factors increases the variation in those control points such that manifestation of each state can 

vary from wetland to wetland.  Accordingly, indicators of alternative states (e.g., chl a 

concentrations) may vary among wetlands enough to appear continuously distributed.  Individual 

wetlands may indeed exhibit individual states, but among a large sample of wetlands across 

landscapes the expected bimodal distribution of a state indicator for a single wetland could be 

masked.  Time-series analyses of chl a concentration within wetlands that are selected at random 

across landscapes within the region might provide evidence to support this explanation.  

However, if individual wetlands have different state-change control points that also lead to clear 

versus turbid states defined at different chl a concentrations, the alternative stable state 

hypothesis might not be useful for conservation planning at a landscape scale.  

 A second alternative explanation considers continuous changes in biological 

communities and the potential for less abrupt transitions in trophic structure.  This explanation is 

not in line with the alternative stable states hypothesis, but rather proposes that trophic structure 

in prairie wetlands is better explained within a continuum.  Changes in dominant species of 

algae, plants, and animals can occur gradually within wetland communities suggesting trophic 

structure may change continuously at various rates (Scheffer et al. 1994; Van den Berg et al. 
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1999; Scheffer and van Nes 2007) rather than the abrupt or catastrophic changes illustrated in 

some of the case-study wetlands.  Certainly, catastrophic state changes as a result of reduced 

nutrient inputs, biomanipulations, or winter-kill events have been documented by other 

investigators (Scheffer et al. 1993; Hanson and Butler 1994a; Bayley et al. 2007; Hobbs et al. 

2012).  However, those cases were also the result of marked changes in stressors affecting those 

wetlands.  It is not clear if a catastrophic regime shift would have been observed if the change in 

stressors were more gradual.  More-abrupt changes in wetland trophic structure would be 

expected to result from more-abrupt events such as biomanipulation which is essentially a 

biological perturbation (Carpenter et al. 1985).   Conversely, more physical perturbations like 

increased sedimentation or changes in hydrology might actually produce more-gradual changes 

in wetland community structure rather than the catastrophic changes predicted by the alternative 

stable state hypothesis.  Thus, a continuum of wetland communities might better describe 

wetlands across these particular landscapes, rather than two distinctive, alternative states (van der 

Valk 1981; Euliss et al. 2004).   Further, the myriad physical and chemical factors that influence 

biological communities in prairie wetlands (Weller and Spatcher 1965; Stewart and Kantrud 

1972; van der Valk and Davis 1978; Euliss et al. 2004) have created more variety of wetland 

conditions, trophic structures, and levels of biological productivity in prairie wetlands than can 

be described by discrete states.   

Distinguishing between biological, chemical, and physical perturbations might be useful 

not only to determine rates of wetland community change, but potentially to understand potential 

future wetland conditions or states (Euliss et al. 2004; Hanson et al. 2005).  Shallow lakes have 

been observed to alternate between states, returning to same state after biological state-changing 

perturbations (Scheffer et al. 1993; Hobbs et al. 2012).  However, if more physical disturbances 
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on adjacent uplands cause a change to the physical structure of the wetland system, a more-

permanent change could prevent a wetland from returning to a prior state.  Two examples of 

disturbances commonly imposed on wetlands in the Prairie Pothole Region are tillage of adjacent 

uplands that increases sedimentation rates (Gleason and Euliss 1998) and drainage of smaller 

wetlands to consolidate water into larger wetland basins (Anteau 2012; McCauley et al. In 

Review; Chapter 2).  Each of these perturbations could change the physical structure of the 

wetland by altering wetland depth and consequently the wetland community.   

Consolidation drainage can unbalance hydrologic dynamics (Chapter 2), resulting in 

higher and more-stable water levels.  Expanded wetland connectivity produced by higher water 

levels can reduce basin isolation.  Creation of more corridors for fish colonization will increase 

the occurrence of sustained fish populations (Chapter 4), subsequently increasing turbidity in 

fish-populated wetlands (Hanson et al. 2005).  Fish occurrence in my study wetlands was not 

independent of landscape modifications that altered wetland physical structure (Chapter 2–4); 

therefore, I did not include “fish” among landscape variables in the model to explain chl a 

concentrations.  Colonization of fish into clear-water wetlands represents a biological 

perturbation and changes in biological communities are often abrupt, reflecting catastrophic 

changes in trophic structure (Carpenter et al. 1985; Scheffer 2001; Zimmer et al. 2003; Zimmer 

et al. 2006).  However, a model that uses landscape variables that are more-readily available than 

are fish data (e.g., land use/land cover, hydrogeomorphology, and water levels) is likely more 

useful for landscape- or regional-scale assessment of wetland condition and is more aligned with 

practical conservation efforts. 

Prairie wetland communities are typically regulated by fluctuation of water levels driven 

by climate variability.  These fluctuations likely maintain wetlands on the clearer side of the 
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continuum through elimination of fish and by improving growth conditions for submerged 

aquatic vegetation.  If disturbances like consolidation drainage reduce or eliminate the drawdown 

portion of the cycle, then wetlands may become more turbid as these wetlands likely receive 

more sediment and nutrients and are more likely to maintain a fish community.  Alternatively, 

water drawdowns in a turbid wetland could trigger a shift toward clearer-water through the 

elimination of fish (Blindow et al. 1993; Bayley et al. 2007) and establishment of submerged 

aquatic vegetation in the shallower water.  Within a disturbed prairie landscape dominated by 

turbid, water-stabilized wetlands, restoration of more-dynamic hydrology is likely a prerequisite 

to the recovery of clear-water biological communities.  

Grassland surrounding a wetland was an important predictor of chl a concentration in my 

analysis.  Relative to wetlands that are surrounded by grassland or that have little or no adjacent 

cropland, wetlands surrounded by a high proportion of cropland likely receive significant 

amounts of sediment delivered by wind and runoff water, and thus tend to be more turbid 

(Gleason and Euliss 1998).  Agricultural practices that have put more land into production have 

increased the amount of exposed soil on the landscape (see Euliss et al. 2010).  Sedimentation 

has been identified as the leading pollutant in prairie wetlands, reducing the abundance of 

submerged aquatic vegetation (USEPA 1995; Gleason and Euliss 1998).  Furthermore, run-off 

water and sediments can transport nutrients, salts and agricultural chemicals from fields to 

wetlands, changing the chemical condition of the wetland (Neely and Baker 1989), potentially 

increasing phytoplankton blooms, and increasing the probability of a wetland being turbid. 

As a technical note, turbidity resulting from suspended sediments can affect in situ 

measurements of chl a concentration.  I found that controlling for turbidity measured by an 

optical probe was essential to post-calibrate optical probe chlorophyll measurements to results 
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from laboratory assessment of chl a via fluorometry.  Most large-particle constituents of turbidity 

are filtered out of samples prior to laboratory fluorometry.  Any optical sensor is likewise 

affected by all sources of turbidity while making in situ measurements; therefore, turbidity likely 

imposes variability in remotely-sensed chl a concentrations.  I used a novel approach to account 

for turbidity by incorporating near infrared (band 4) and short-wave infrared reflectance (bands 5 

and 7) accounted for some of the variation associated with turbidity not due to chl a (Moore et al. 

1999; Schalles 2006; Gilerson et al. 2010).   Near infrared and short-wave infrared wavelengths 

are mostly absorbed in clear water, but suspended solids in water will backscatter these 

wavelengths increasing reflectance values in turbid water (Moore et al. 1999; Schalles 2006; 

Gilerson et al. 2010).  There is potential for further investigation to refine remote sensing 

algorithms to better understand spectral signatures of wetland water types and vegetation 

communities.  

If alternative states do exist and can be defined in individual wetlands, understanding 

regime-shift triggers and the resilience of biotic communities could allow managers to more 

effectively manipulate wetland states where more detailed information is available on prior 

perturbations and other drivers of biological communities.  However, wetland chl a 

concentrations resemble a continuous distribution across landscapes in the Prairie Pothole 

Region of North Dakota.  This, plus the fact that landscape variables better predict chl a 

concentration as a continuous, not a binomial, distribution suggests that the alternative stables 

states hypothesis might not be an appropriate framework for assessing processes relevant to 

conservation of wetlands across the prairie landscapes.  Accordingly, for the purposes of 

improving conservation delivery and planning, I question the usefulness of characterizing 

wetlands within an alternative stable state framework.  Alternatively, evaluation of wetland 
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condition at a larger scale might best focus on simply evaluating patterns of anthropogenic 

disturbances that correspond to degradation of wetland biological communities and their 

ecological functions. 
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CHAPTER 7.  GENERAL CONCLUSION 

Waterbird conservation can benefit from evaluation of wetland habitat within watershed-

derived wetland complexes in the Prairie Pothole Region.  These larger-than-wetland-scale 

evaluations provide insight into processes that drive changes within remaining wetlands and 

provide context to trends that may be important for understanding waterbird populations in the 

region (Niemuth et al. 2009).  Migrating and breeding waterbirds use complexes of wetlands 

during each life stage (Skagen and Knopf 1994; Niemuth et al. 2006).  Therefore, conservation 

efforts need to be based on how wetland habitat availability is affected by landscape changes that 

result from anthropogenic disturbances (Higgins et al. 2002), all in a temporal context of climate 

variability and longer-term climate change (Johnson et al. 2010; Niemuth et al. 2010; Loesch et 

al. 2012).  

 Identification of the implications that anthropogenic disturbances have on waterbird 

habitat at landscape and regional scales can help prioritize effective conservation efforts.  I found 

that consolidation drainage has a progressive-chronic effect on the hydrology of more-permanent 

wetlands by increasing the amount of surface water these wetlands receive, at a rate exceeding 

their rate of water loss (Chapter 2).  Thus, these wetlands increase in size until they fill their 

topographic basin.  Further, I speculated that wetlands occupying topographic basins that are 

already full will spill additional drainage water to downstream watersheds, adding to regional 

flood problems.  In extensively drained catchments there are fewer small wetlands to provide 

waterbird habitat, while productivity of remaining larger wetlands has been adversely affected 

(Chapters 3–5).  Drastic disturbances to natural wetland complexes, composed of wetlands 

having various hydroperiods, have likely degraded overall landscape productivity of waterbird 

food resources across wet–dry climate periods.  This process has produced a landscape 
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increasingly composed of wetlands representing two extremes: drained former-wetland basins 

and permanent lakes.  This altered landscape is likely less able to provide necessary migration 

and breeding habitat for waterbirds due to reduced productivity of essential plant and animal 

forage (Afton and Anderson 2001; Anteau et al. 2011).  In addition, structural changes to 

wetlands may reduce the abundance of foraging habitat, especially for shorebirds (Niemuth et al. 

2006; Anteau 2012). 

 Altered hydrology can change wetland communities and result in less biodiversity 

dominated by less-desirable populations.  Cattails or fish can become abundant in wetlands 

where water levels have risen to fill more of their topographic basin, and where water-level 

dynamics have been reduced (Chapters 3 and 4).  Consolidation drainage can be indirectly linked 

to increased abundances of cattails or of fish.  Such changes ultimately lead to reduced wetland 

quality, as defined by the ability to support diverse plant, invertebrate, and waterbird 

communities. 

 Restoration of wetlands having various hydroperiods within watershed-derived wetland 

complexes is likely the most effective approach to reversing the effects of consolidation drainage 

(Anteau 2012).  This strategy entails protection or restoration of temporary and seasonal 

wetlands encompassed within the catchment of larger wetlands, such as semipermanent 

wetlands.  Conservation programs that purchase land, or gain easements, in areas without direct 

control over wetland hydrology in the upper-portion of the watershed may be less effective than 

efforts that directly protect or restore watershed-derived wetland complexes.  However, degraded 

catchments of protected wetlands may receive greater legal attention in the future if land use and 

wetland drainage are strongly linked to declines in biological productivity and diversity.  
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Amphipod densities in wetlands across the region remain low compared to historical 

accounts, despite hydrological conditions that were perceived to be prime for amphipod 

production during the time of my observations (Anteau and Afton 2008; Chapter 5).  Weak 

evidence suggests that consolidation drainage has had a negative effect on amphipod densities in 

wetlands.  Nonetheless, 23%, 15%, and 6% of wetlands surveyed had >100 amphipods m-3 

during 2004/05, 2011, and during both 2004/05 and 2011, respectively.  This suggests that there 

are still highly-productive wetlands in the region that provide forage for waterbird populations at 

various phases within climate variability, and a sparse few wetlands appear to be consistently 

productive.  Further study of wetlands that are consistently highly productive might provide 

significant insight into factors required for high invertebrate production in wetlands within the 

region.  Such additional research may improve our ability to identify and prioritize these types of 

wetlands for cost-effective conservation at the landscape scale. 

 It may prove more useful for waterbird conservation to consider the frequency of highly 

productive wetlands in the region than to focus on overall mean productivity, or to seek out 

drivers of small changes in productivity within wetlands.  Understanding local and landscape 

factors that are related to either consistently productive wetlands, or wetlands in which 

productivity is very dynamic, could help managers understand region-wide levels of productivity 

through different phases of climate variability.  To advance this goal, future research should 

focus on identifying and intensely studying highly-productive wetlands, while making 

comparisons to less-productive wetlands.  This approach differs from previous regional-scale 

investigations that typically select subject wetlands randomly, without prior knowledge of 

system productivity.  Such use of prior knowledge has the potential to improve study design, 

statistical inference, and ultimately our understanding of wetland productivity.  
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 There is potential for characteristics of highly-productive wetlands to be sensed remotely.  

One such indicator of wetland productivity that can be remotely-sensed is chlorophyll a 

concentration (Chapter 6).  My data fail to support the alternative stable state hypothesis due to 

lack of a bimodal distribution of chlorophyll a (Chapter 6).  Nevertheless, chlorophyll a may be a 

useful negative indicator of productivity within wetlands as it relates to available waterbird 

forage, although perhaps within the framework of a continuum.  Other indicators of wetland 

productivity that could be remotely sensed might include vegetation structure, water quality (e.g., 

turbidity), wetland connectivity, and upland land cover/land use (Naugle et al. 2001).  There are 

several benefits to developing a model of highly-productive wetlands using remotely-sensed 

data, including increased sample size and spatial distribution, and availability of historic data 

(e.g., Landsat) to improve capability for time-series analyses.  Time-series analyses using 

remotely-sensed data have the greatest potential to better detect effects of landscape 

modifications on wetland productivity in the context of climate variability, but this approach will 

rely on predictions of productivity developed from less extensive studies. 

Conservation programs focused on understanding how landscape modifications have 

altered wetland productivity and that increase the frequency of highly-productive wetlands may 

better manage long-term wetland quality for waterbirds across different phases of climate 

variation.  Within modified landscapes, recovering a balance between smaller, less-permanent 

and larger, more-permanent wetlands, linked by through groundwater networks that fluctuate in 

response to climate variability, will likely enhance waterbird habitat across wet–dry periods of 

climate fluctuations.  Identifying and protecting wetlands exhibiting consistently high levels of 

productivity can be a more cost-effective model for conservation because these wetlands play a 

vital role in supporting waterbird populations within the region.  Better understanding of what 
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makes wetlands highly productive will lead to more effective conservation efforts.  Such 

knowledge will be useful in identifying landscapes where complexes of wetlands, with diverse 

hydroperiods, can be restored potentially creating landscapes that maintain high productivity 

throughout cycles of climate variability. 
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